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EXECUTIVE SUMMARY 

The Heavy Weight Deflectometer (HWD)/Falling Weight Deflectometer (FWD) is a 
nondestructive tool typically used for assessing pavement conditions. An impulse load, 
simulating the effects of a moving wheel, is applied to the pavement surface, and the resulting 
surface deflections are collected. Pavement variables, such as moduli, are then determined 
through a method known as backcalculation. This process employs a forward model to compute 
pavement surface deflections and an optimization model to progressively minimize the 
differences between the measured and computed deflections.  
 
Presently, the Federal Aviation Administration (FAA) relies on linear elastic theory (LET) and 
static analysis within its BAKFAA software to estimate layer moduli for both flexible and rigid 
pavements. However, static analysis has limitations, particularly when dealing with thick and 
stiff airfield pavement structures. 
 
To address these limitations, a finite element (FE) model was developed to incorporate the 
subgrade’s damping behavior, which is a key consideration given the short duration for the FWD 
impulse load. This dynamic model facilitated the backcalculation of layer moduli for various 
pavement structures constructed over the same subgrade at the FAA National Airport Pavement 
Test Facility (NAPTF). The model is also validated by comparing the calculated responses, 
including data from pressure cells, strain gauges, and multi-depth deflectometers, with the 
respective measured responses during FAA Construction Cycle (CC)-1 tests. In summary, 
dynamic backcalculation emerges as the preferred approach over static backcalculation due to its 
ability to account for inertial effects, viscoelastic behavior of the asphalt concrete (AC) layer, 
and material damping. 
 
In this project, an FE tool known as PULSE_FE is developed that can assess the responses of 
multilayer pavement structures under static or dynamic impulse loading with linear elastic and 
viscoelastic isotropic materials. PULSE_FE was validated against the ABAQUS FE, yielding 
identical results within 1 to 3 percent of the time ABAQUS typically needs. This considerable 
improvement in computation time marks a significant milestone, rendering dynamic 
backcalculation a feasible approach. 
 
The dynamic backcalculation process was successfully applied to a CC-9 flexible test item, 
yielding reliable layer parameters. A comprehensive parametric study was conducted, involving 
15,552 pavement structures through FE modeling, resulting in a preliminary list of key FWD 
parameters for the backcalculation process. 
 
An optimization framework was developed to streamline the backcalculation procedure. The 
framework integrates pavement structure modeling, preprocessing, FE modeling, and analysis, 
enabling the direct retrieval of calculated parameters without manual intervention. Multiple 
optimizers, including variants of Newton-Raphson, Quasi-Newton, Powell, Nelder–Mead, 
Bayesian, and Kalman, were implemented and evaluated within this optimization framework. 
Constrained optimization techniques were employed to enhance the generation of practical 
solutions. Experimental evaluations, conducted using both synthetic and field measured data, 
provided strong evidence of the effectiveness of these optimization methods and the reliable 
recovery of pavement variables through this approach. 



 

xx 

Additionally, a user-friendly graphical user interface (GUI) program for the BAKFAA Dynamic 
Backcalculation (DynaBAKFAA) software was developed. This software allows users to 
perform a range of tasks, including generating a mesh for the pavement structure domain, 
creating FWD input files, inputting and editing material properties for each pavement layer, 
conducting forward analyses to determine pavement responses at various locations within the 
structure, and performing dynamic backcalculation using a variety of optimizers to ascertain 
pavement variables. 
 
In summary, this work has led to the development of a competent FE module, an advanced 
dynamic backcalculation process, and an automated optimization framework. These 
advancements are expected to enhance pavement assessment and analysis, with the user-friendly 
GUI program further facilitating the adoption of these techniques in practical applications. 
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1.  INTRODUCTION 

The heavy weight deflectometer (HWD)/falling weight deflectometer (FWD) is a nondestructive 
pavement evaluation device commonly used to assess pavement condition. It operates by 
applying a short-duration impulse load (simulating a moving wheel load) to the pavement 
surface and measuring the corresponding deflections. The pavement variables (e.g., moduli) are 
then determined through a process called backcalculation, using a forward model to calculate the 
deflections and an optimization model to iteratively improve the variables. A reliable 
backcalculation of the layer variables using FWD data is critical for the structural evaluation of 
pavements. 
 
The Federal Aviation Administration (FAA) currently uses the linear elastic theory (LET), which 
is based on static analysis in its BAKFAA (2023) software for the backcalculation of layer 
moduli for flexible and rigid pavements. Static analysis presents numerous constraints during the 
backcalculation process, particularly for airports where rigid or thick and stiff flexible pavement 
structures are prevalent. In a previous FAA study, researchers developed a simple and robust 
finite element (FE) model based on dynamic analysis to address the limitations of existing 
models. They also properly incorporated the subgrade’s damping behavior, which had to be 
considered due to the short FWD impulse load (Bazi, Mansour, Sebaaly, & Hajj, 2018; Bazi, 
Gagnon, Sebaaly, & Ullidtz, 2020). The model was used at the FAA National Airport Pavement 
Test Facility (NAPTF) for the backcalculation of layer moduli for flexible and rigid pavement 
structures built over the same subgrade. The new model’s backcalculation generated reasonable 
layer moduli that aligned with the type of material in each layer, and, most importantly, it 
yielded nearly identical layer moduli for the same subgrade material under various pavement 
structures and types. The generated layer variables (including moduli) were validated by 
comparing the measured responses from the FAA Construction Cycle (CC)-1 test items with 
responses calculated using three-dimensional (3D) FE models under simulated Boeing (B)747 
and B777 moving wheel loads (Bazi, Mansour, Sebaaly, Ji, & Garg, 2019). The measured 
responses, which included data from pressure cells, strain gauges, and multi-depth 
deflectometers, closely matched the calculated responses. 
 
In summary, dynamic backcalculation is recommended over static backcalculation because it 
enables the consideration of inertial effects, the viscoelastic behavior of the asphalt concrete 
(AC) layer, and the material damping.  
 
As part of the current project, the research team is developing a standalone FE module 
(PULSE_FE) based on dynamic analysis and evaluating different optimization techniques for 
upgrading the BAKFAA (2023) software. The PULSE_FE has static and dynamic modeling 
capabilities along with linear elastic and viscoelastic isotropic materials. The FE module is 
introduced and compared to the commercial ABAQUS FE software (ABAQUS, 2019). The 
PULSE_FE effectiveness and efficiency are demonstrated by producing identical results to 
ABAQUS in only 1 to 3 percent the runtime that ABAQUS takes. The improvement in the 
calculation time is a significant achievement, making dynamic backcalculation feasible. 
 
Furthermore, the update to the dynamic backcalculation involves (1) attempting to predict the 
AC layer master curve using synthetic FWD data, (2) assessing a CC-9 flexible pavement test 
item, and (3) conducting a parametric study to determine the most significant FWD parameters 
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for use in the dynamic backcalculation. The analyses indicate that predicting the master curve is 
challenging, whereas conducting the dynamic backcalculation is feasible and capable of 
generating reliable results. The analysis of the CC-9 test item reveals that unbound materials, 
including the aggregate base and subgrade layers, exhibit mild stress-softening behavior that 
require evaluation through backcalculation at various FWD load levels. It is noteworthy that the 
stress sensitivity obtained from backcalculation is not as pronounced as the material non-linearity 
observed in laboratory testing. Previous research has demonstrated that the confinement effect 
resulting from the stiffness of the layers above an unbound layer significantly influences that 
layer and should undergo further evaluation, potentially being considered in pavement analysis 
procedures (Bazi, Saboundjian, Bou Assi, & Diab, 2020).   
 
The remaining sections of the report are structured as follows: Section 2 explains the theoretical 
background of FE modeling, with a focus on the details of the axisymmetric case. Section 3 
provides an overview of the FE module, covering topics such as the mesh generator, matrix 
storage, and a comparison between PULSE_FE and ABAQUS. Section 4 showcases the 
improvements in dynamic backcalculation using both simulated and real FWD data. Section 5 
describes the development of an Optimization Technique. Section 6 offers a summary of the 
BAKFAA Dynamic Backcalculation (DynaBAKFAA) deliverable. Section 7 details the 
established database for the PULSE_FE program. Section 8 presents the summary and 
conclusions, and Section 9 contains the list of references. 
 
2.  FINITE ELEMENT METHOD 

The FE method operates on the fundamental concept of dividing a continuum into a finite 
number of smaller regions known as finite elements. These elements must neither overlap nor 
have gaps between them. Each element is characterized by a set of key points referred to as 
nodes, which govern the element’s behavior. Typically, these elements exhibit simpler 
geometries, load conditions, boundary conditions, and so on compared to the original continuum. 
This simplification ensures that stresses and displacements within each element vary in a 
monotonous manner. Consequently, deformation within each element can be approximated using 
displacement functions. By establishing dependencies between displacements or stresses at any 
point within an element and those at its nodes, a finite set of differential equations of motion can 
be formulated for these nodes. This approach allows users to transform a problem with an 
infinite number of degrees of freedom into one with a finite number, streamlining the solution 
process (Qu, 2004). 
 
2.1  MECHANICAL RESPONSE OF SOLIDS AND STRUCTURES TO EXTERNAL 
FORCES 

Loads, or external forces, subject solids and structures to stress, resulting in nonuniform stresses 
and measurable strains or even observed deformation/displacement. Solid or structural 
mechanics establish relationships among stresses, strains, displacements, and forces, under 
proper boundary conditions for solids and structures. These relationships are crucial for 
modeling, simulating, and designing engineered structural systems (Liu & Quek, 2013). 
Forces can be static or dynamic. Static forces concern solids and structures under static loads, 
while dynamic forces induce vibrations with time-dependent stress, strain, and displacement. 
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Dynamics principles and theories apply in such cases. Statics can be derived as a special case of 
dynamics by omitting dynamic terms from the general dynamic equations (Liu & Quek, 2013). 

2.2  THREE-DIMENSIONAL SOLIDS 

2.2.1  Displacement Vector and Motion in 3D Solids 

A point’s motion in a 3D solid (Figure 1) is determined by a displacement vector 𝑼𝑼 comprising 
three components: 

𝑼𝑼 = [𝑢𝑢, 𝑣𝑣,𝑤𝑤]𝑇𝑇    (1) 

The displacements of the point in the Cartesian axe’s directions x, y, and z are represented by u, 
v, and w, respectively. 

Figure 1. Displacements and Loads for a 3D Solid (Oñate, 2009) 

2.2.2  Strain Components and Their Mathematical Formulation in 3D Solids 

Strain represents the change in displacements per unit length, and, as such, the strain components 
in a 3D solid are determined by calculating derivatives of the displacements. The strain field is 
defined by six strain components (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑦𝑦, 𝜀𝜀𝑧𝑧, 𝛾𝛾𝑥𝑥𝑥𝑥, 𝛾𝛾𝑥𝑥𝑥𝑥, and 𝛾𝛾𝑦𝑦𝑦𝑦), forming a strain vector 𝜀𝜀. 

𝜀𝜀 = �𝜀𝜀𝑥𝑥𝑥𝑥, 𝜀𝜀𝑦𝑦𝑦𝑦, 𝜀𝜀𝑧𝑧𝑧𝑧 ,𝛾𝛾𝑦𝑦𝑦𝑦 ,𝛾𝛾𝑥𝑥𝑥𝑥 ,𝛾𝛾𝑥𝑥𝑥𝑥�
𝑇𝑇

(2) 

𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

    𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜀𝜀𝑧𝑧𝑧𝑧 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

𝛾𝛾𝑥𝑥𝑥𝑥 = 2𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

   𝛾𝛾𝑥𝑥𝑥𝑥 = 2𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛾𝛾𝑦𝑦𝑦𝑦 = 2𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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where 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑦𝑦 and 𝜀𝜀𝑧𝑧 are the normal strains, and 𝛾𝛾𝑥𝑥𝑥𝑥, 𝛾𝛾𝑥𝑥𝑥𝑥, and 𝛾𝛾𝑦𝑦𝑦𝑦 denote the tangential or shear 
strains. It is important to note that the engineering notation of 𝛾𝛾𝑖𝑖𝑖𝑖, referred to as engineering 
shear strain, is used instead of the tensor notation of 𝜀𝜀𝑖𝑖𝑖𝑖 (=

𝛾𝛾𝑖𝑖𝑖𝑖
2

) for the shear strain components in 
the vector form of strains. This distinction arises because tensors are mathematical entities 
subject to specific rules governing their transformation between coordinate systems. 
 
2.2.3  Stress Components and Stress Tensors in 3D Solids 

In a 3D solid, stress components are represented on the surface of an infinitesimal cubic volume. 
Each surface features one normal stress component and two shear stress components. The stress 
designation employs subscripts, with the first subscript indicating the acting surface, and the 
second subscript indicating the stress direction. 
 
Six independent stress components exist at a point within 3D solids, as depicted in  Figure 2. 
These stress components are termed stress tensors because they adhere to the rules of coordinate 
transformation for tensors and can be expressed in vector form, as shown in Equation 3:  
 

𝝈𝝈 = �𝜎𝜎𝑥𝑥𝑥𝑥,𝜎𝜎𝑦𝑦𝑦𝑦,𝜎𝜎𝑧𝑧𝑧𝑧 , 𝜏𝜏𝑦𝑦𝑦𝑦 , 𝜏𝜏𝑥𝑥𝑥𝑥 , 𝜏𝜏𝑥𝑥𝑥𝑥�
𝑇𝑇
 (3) 

 
In this equation, 𝜎𝜎𝑥𝑥 (𝜎𝜎𝑥𝑥𝑥𝑥), 𝜎𝜎𝑦𝑦 �𝜎𝜎𝑦𝑦𝑦𝑦�, and 𝜎𝜎𝑧𝑧 (𝜎𝜎𝑧𝑧𝑧𝑧) represent the normal stresses, and 𝜏𝜏𝑥𝑥𝑥𝑥, 𝜏𝜏𝑥𝑥𝑥𝑥, and 
𝜏𝜏𝑦𝑦𝑦𝑦 denote the tangential or shear stresses. The shear equivalence relations (𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑗𝑗𝑗𝑗) are 
validated through the equilibrium state, considering the moments of forces about the central axes 
of the cube. 
 

 

Figure 2. Stresses in a 3D Solid Element (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020) 

2.2.4  Stress-Strain Relationship 

Hooke’s law, a constitutive equation, defines the relationship between stress and strain in a 
material. The following matrix form provides the generalized Hooke’s law for 3D anisotropic 
materials, as shown in Equation 4: 
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𝝈𝝈 = 𝑫𝑫𝜀𝜀 (4) 
 

In this equation, D represents the 6×6 elasticity matrix of material constants. The constitutive 
equation is written explicitly as: 
 

⎩
⎪
⎨

⎪
⎧
𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦
𝜎𝜎𝑧𝑧𝑧𝑧
𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐷𝐷11
⬚
⬚
⬚
⬚
𝑠𝑠𝑠𝑠.

𝐷𝐷12
𝐷𝐷22
⬚
⬚
⬚
⬚

𝐷𝐷13
𝐷𝐷23
𝐷𝐷33
⬚
⬚
⬚

𝐷𝐷14
𝐷𝐷24
𝐷𝐷34
𝐷𝐷44
⬚
⬚

𝐷𝐷15
𝐷𝐷25
𝐷𝐷35
𝐷𝐷45
𝐷𝐷55
⬚

𝐷𝐷16
𝐷𝐷26
𝐷𝐷36
𝐷𝐷46
𝐷𝐷56
𝐷𝐷66⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝑧𝑧𝑧𝑧
𝛾𝛾𝑦𝑦𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝛾𝛾𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

 (5) 

 
For a fully anisotropic material, there are 21 independent material constants 𝐷𝐷𝑖𝑖𝑖𝑖 (since 𝐷𝐷𝑖𝑖𝑖𝑖  = 𝐷𝐷𝑗𝑗𝑗𝑗). 
For linear elastic isotropic materials, D is reduced to: 
 

𝑫𝑫 = 𝐸𝐸𝑫𝑫� = 𝐸𝐸

⎣
⎢
⎢
⎢
⎢
⎡
𝐷𝐷11
⬚
⬚
⬚
⬚
𝑠𝑠𝑠𝑠.

𝐷𝐷12
𝐷𝐷11
⬚
⬚
⬚
⬚

𝐷𝐷12
𝐷𝐷12
𝐷𝐷11
⬚
⬚
⬚

0
0
0
𝐷𝐷44
⬚
⬚

0
0
0
0
𝐷𝐷44
⬚

0
0
0
0
0
𝐷𝐷44⎦

⎥
⎥
⎥
⎥
⎤

 (6) 

 
 

𝐷𝐷11 = (1−𝜇𝜇)
(1−2𝜇𝜇)(1+𝜇𝜇)  𝐷𝐷12 = 𝜇𝜇

(1−2𝜇𝜇)(1+𝜇𝜇)  𝐷𝐷44 = 1
2(1+𝜇𝜇) 

 
 
where E is the Young’s modulus, µ is the Poisson’s ratio, G is the shear modulus, and 𝑫𝑫�  is the 
dimensionless elasticity matrix. There are two independent constants among E, µ, and G. Given 
any two of the three constants, the other one is calculated using the following equation:  
 

𝐺𝐺 = 𝐸𝐸
2(1+𝜇𝜇) (7) 

 
The inverse of the elasticity matrix D is referred to as the flexibility or compliance matrix, which 
is defined differently for isotropic, orthotropic, and anisotropic material. For isotropic materials, 
D-1 matrix is given in the following form: 

 

𝑫𝑫−𝟏𝟏 = 1
𝐸𝐸

⎣
⎢
⎢
⎢
⎢
⎡

1
⬚
⬚
⬚
⬚
𝑠𝑠𝑠𝑠.

−𝜇𝜇
1
⬚
⬚
⬚
⬚

  −𝜇𝜇
  −𝜇𝜇
  1
⬚
⬚
⬚

0
0
0

2(1 + 𝜇𝜇)
⬚
⬚

0
0
0
0

2(1 + 𝜇𝜇)
⬚

0
0
0
0
0

2(1 + 𝜇𝜇)⎦
⎥
⎥
⎥
⎥
⎤

  (8) 
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2.3  AXISYMMETRIC MODELING FOR SIMPLIFIED ANALYSIS OF 3D SYMMETRIC 
PROBLEMS 

When dealing with a 3D problem characterized by symmetric geometry, loadings, boundary 
conditions, and materials with respect to an axis, one resolves it as an axisymmetric problem 
(Figure 3) by employing two-dimensional (2D) finite elements. Typically, cylindrical 
coordinates (𝑟𝑟, 𝜃𝜃, 𝑧𝑧) are used, where 𝑟𝑟 denotes the radial direction from the axis of rotation, 𝑧𝑧 
signifies the direction along the axis of rotation, and 𝜃𝜃 represents the circumferential direction 
(Hutton, 2004). In this scenario, displacement remains unaffected by the tangential coordinate θ, 
resulting in a stress analysis that is mathematically 2D, dependent on radial and axial 
coordinates, even though the physical problem is 3D. 
 
For the analysis of pavement structures under FWD loading, it is best to formulate them using 
axisymmetric models. This approach simplifies and accelerates the analysis compared to 
comprehensive 3D analyses. It must be stated that when identical input parameters are applied, 
the 2D axisymmetric and 3D models yield identical results. 
 

 
Figure 3. Axisymmetric Pavement Problem under FWD Loading (Bazi, Gagnon, Sebaaly, & 

Ullidtz, 2020) 

 
2.3.1  Radial and Axial Displacement Field 

The radial (𝑢𝑢) and axial (𝑤𝑤) displacements define the movement of a point in an axisymmetric 
solid (Figure 4), with the following displacement vector 𝑼𝑼: 
 

𝑼𝑼 = [𝑢𝑢,𝑤𝑤]𝑇𝑇 (9) 
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Figure 4. Axisymmetric Solid (Oñate, 2009) 

2.3.2  Strain Analysis in Axisymmetric Solids with Symmetrical Displacements 

Because of the symmetry in geometry, material properties, boundary conditions, and loads about 
the axis of symmetry, the displacements 𝑢𝑢 and 𝑤𝑤 become independent of the circumferential 
coordinate 𝜃𝜃. Consequently, the tangential strains 𝛾𝛾𝑟𝑟𝑟𝑟 and 𝛾𝛾𝑧𝑧𝑧𝑧 become zero. 
 
Points located on a circumference of radius 𝑟𝑟 experience movement, due to the axial 
deformation, to a circumference of radius 𝑟𝑟 + 𝑢𝑢. This results in a circumferential strain, defined 
as the relative elongation between these two circumferences (Figure 5). 

 
𝜀𝜀𝜃𝜃 = 2𝜋𝜋(𝑟𝑟+𝑢𝑢)−2𝜋𝜋𝜋𝜋

2𝜋𝜋𝜋𝜋
= 𝑢𝑢

𝑟𝑟
 (10) 

 
 

 

Figure 5. Derivation of the Circumferential (Hoop) Strain 𝜺𝜺𝜽𝜽  (Oñate, 2009) 

The radial, axial, and shear strains are obtained by derivatives of the displacements, as illustrated 
in Figure 6. The strain vector 𝜀𝜀 reduces to: 
 



 

8 

𝜀𝜀 = [𝜀𝜀𝑟𝑟 , 𝜀𝜀𝑧𝑧 , 𝜀𝜀𝜃𝜃, 𝛾𝛾𝑟𝑟𝑟𝑟]𝑇𝑇  (11) 
     
 

𝜀𝜀𝑟𝑟 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  𝜀𝜀𝑧𝑧 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  𝜀𝜀𝜃𝜃 = 𝑢𝑢
𝑟𝑟
   𝛾𝛾𝑟𝑟𝑟𝑟 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 

 
where 𝜀𝜀𝑟𝑟, 𝜀𝜀𝑧𝑧, and 𝜀𝜀𝜃𝜃 represent the normal strains (radial, axial, and circumferential or hoop, 
respectively), and 𝛾𝛾𝑟𝑟𝑟𝑟 signifies the tangential or shear strain.  
 

 

Figure 6. Derivation of the Radial, Axial, and Shear Strains  
(Bazi, Gagnon, Sebaaly, & Ullidtz, 2020) 

 
2.3.3  Vector Representation of Stresses and Their Components 

The stresses are written in a vector form:  
 

𝝈𝝈 = [𝜎𝜎𝑟𝑟 ,𝜎𝜎𝑧𝑧 ,𝜎𝜎𝜃𝜃 , 𝜏𝜏𝑟𝑟𝑟𝑟]𝑇𝑇 (12) 
 
In this representation, 𝜎𝜎𝑟𝑟, 𝜎𝜎𝑧𝑧, and 𝜎𝜎𝜃𝜃 denote the normal radial, axial, and circumferential stresses, 
respectively. As shown in Figure 7, 𝜏𝜏𝑟𝑟𝑟𝑟 represents the tangential or shear stress. 
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Figure 7. Stresses Acting on Differential Volume of Axisymmetric Solid (Oñate, 2009) 

2.3.4  Stress-Strain Relationship 

The elasticity matrix, 𝑫𝑫, for a 2D axisymmetric problem is derived from that of a 3D solid by 
imposing the conditions of  𝛾𝛾𝑟𝑟𝑟𝑟 = 𝛾𝛾𝑧𝑧𝑧𝑧 = 0 and by assuming that the shear strain, 𝛾𝛾𝑟𝑟𝑟𝑟, is not 
coupled with the hoop stress, 𝜎𝜎𝜃𝜃. For a 2D axisymmetric isotropic material, the matrix of elastic 
constants is given as: 
 

𝑫𝑫 = 𝐸𝐸𝑫𝑫� = 𝐸𝐸

⎣
⎢
⎢
⎡
𝐷𝐷11 𝐷𝐷12 𝐷𝐷12 0
⬚ 𝐷𝐷11 𝐷𝐷12 0
⬚ ⬚ 𝐷𝐷11 0
𝑠𝑠𝑠𝑠. ⬚ ⬚ 𝐷𝐷44⎦

⎥
⎥
⎤
 (13) 

 
 

𝐷𝐷11 = (1−𝜇𝜇)
(1−2𝜇𝜇)(1+𝜇𝜇)  𝐷𝐷12 = 𝜇𝜇

(1−2𝜇𝜇)(1+𝜇𝜇)  𝐷𝐷44 = 1
2(1+𝜇𝜇) 

 
2.4  LINEAR VISCOELASTIC MATERIAL BEHAVIOR AND RHEOLOGICAL MODELS 

Viscoelastic materials are modeled to determine their stress and strain interactions, as well as 
their temporal dependencies. Their response depends not only on the deformation but also on the 
rate of deformation when loaded. The material also experiences relaxation, in which the stress 
gradually decreases when deformation is constant, or creep, in which the deformation gradually 
increases when the load is kept constant. 
 
Viscoelastic behavior comprises elastic and viscous components modeled as linear combinations 
of springs and dashpots, respectively. The elastic spring is called Hooke element, while the 
dashpot is referred to as the Newton element (see Figure 8). 
 
The elastic material constant, denoted as 𝐸𝐸, provides the linear relationship for the Hooke 
element between elastic strain, 𝜀𝜀𝑒𝑒, and elastic stress, 𝜎𝜎𝑒𝑒 . 
 

𝜎𝜎𝑒𝑒 = 𝐸𝐸𝜀𝜀𝑒𝑒 (14) 
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The viscous stress 𝜎𝜎𝑣𝑣 of the Newton element relates to the strain rate 𝜀𝜀̇𝑣𝑣 using the coefficient of 
viscosity 𝜂𝜂. 
 

𝜎𝜎𝑣𝑣 = 𝜂𝜂 𝑑𝑑𝜀𝜀𝑣𝑣

𝑑𝑑𝑑𝑑
= 𝜂𝜂𝜀𝜀̇𝑣𝑣 (15) 

 
The viscosity 𝜂𝜂 can be expressed in terms of the elastic constant 𝐸𝐸 by introducing the relaxation 
time 𝜏𝜏. 
 

 

Figure 8. Hooke, Newton, Maxwell, and Kelvin-Voigt Elements (from left) (Bazi, Gagnon, 
Sebaaly, & Ullidtz, 2020)   

Combining the Hooke and Newton elements in series yields the Maxwell element, while their 
parallel combination results in the Kelvin-Voigt model (Figure 8). The Maxwell model can 
predict stress relaxation in materials, whereas the Kelvin-Voigt model can predict creep. 
More complex models can be constructed using different combinations of springs and dashpots 
to better fit experimental data from creep, relaxation, or frequency-dependent tests. A complex 
viscoelastic rheological model typically takes the form of the generalized Maxwell model or the 
generalized Kelvin chain.  

 
2.4.1  Viscoelastic Modeling and Generalized Maxwell Elements 

In a Maxwell element, the total strain 𝜀𝜀 is the sum of an elastic, 𝜀𝜀𝑒𝑒, and a viscous 𝜀𝜀𝑣𝑣 component, 
while the stress remains consistent in both rheological elements. 
 

𝜀𝜀 = 𝜀𝜀𝑒𝑒 + 𝜀𝜀𝑣𝑣 (16) 
𝜎𝜎 = 𝐸𝐸𝜀𝜀𝑒𝑒 = 𝜂𝜂𝜀𝜀̇𝑣𝑣 (17) 

 
By differentiating Equation 16 with respect to time and applying the constitutive relations for 
both the spring and dashpot, the differential equation for the Maxwell model is derived: 
 

𝜀𝜀̇ = 𝜀𝜀̇𝑒𝑒 + 𝜀𝜀̇𝑣𝑣 =  𝜎̇𝜎
𝐸𝐸

+ 𝜎𝜎
𝜂𝜂
 (18) 

 
Solving this equation in a relaxation experiment (Figure 9) yields the following: 
 

𝜎𝜎(𝑡𝑡)
𝜀𝜀0

= 𝐸𝐸𝑒𝑒−
𝑡𝑡
𝜏𝜏 = 𝑅𝑅(𝑡𝑡) (19) 
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where 𝜏𝜏 = 𝜂𝜂
𝐸𝐸
 represents the relaxation time, i.e., the time needed to reduce the stress to 𝑒𝑒−1 of its 

initial value after imposing the strain, and 𝑅𝑅(𝑡𝑡) is the relaxation function. 
 

 

Figure 9. Relaxation Test with Maxwell Element: Strain History (Left) and Resulting Stress 
Response (Right) (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020) 

The general solution of the differential equation of the Maxwell element with arbitrary strain 
histories is obtained through the convolution integral: 
 

𝜎𝜎(𝑡𝑡) = 𝐸𝐸 ∫ 𝑒𝑒−
𝑡𝑡−𝑠𝑠
𝜏𝜏

𝑡𝑡
0 𝜀𝜀̇𝑑𝑑𝑑𝑑 = ∫ 𝑅𝑅(𝑡𝑡 − 𝑠𝑠)𝜀𝜀̇𝑡𝑡

0 𝑑𝑑𝑑𝑑 (20) 
 
This integral is known as the Hereditary Integral and is closely related to the Boltzmann 
Superposition Principle for linear isotropic viscoelastic materials. 
 
While the basic Maxwell model qualitatively captures the material behavior, it might fall short in 
providing a quantitative representation. To address this, Generalized Maxwell models are 
systematically developed to improve accuracy (see Figure 10). The Generalized Maxwell model, 
also known as the Wiechert model, consists of a finite number of separate Maxwell elements 
arranged in parallel with an elastic Hooke element. This model considers relaxation that occurs 
at multiple times, not just a single time. 
 
The relaxation function, 𝑅𝑅(𝑡𝑡), can be expressed in terms of a series of negative exponentials, 
forming the Prony series that mathematically characterizes the Generalized Maxwell model: 
 

𝑅𝑅(𝑡𝑡) = 𝐸𝐸∞ + ∑ 𝐸𝐸𝑗𝑗𝑒𝑒
− 𝑡𝑡
𝜏𝜏𝑗𝑗𝑁𝑁

𝑗𝑗=1  (21) 
 
Here, 𝐸𝐸∞ represents the long-term equilibrium modulus; 𝐸𝐸𝑗𝑗 and 𝜏𝜏𝑗𝑗 denote the elastic stiffness and 
viscous relaxation time associated with each element in the generalized Maxwell model, 
respectively; and 𝑁𝑁 represents the number of spring-dashpot Maxwell elements. 
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Figure 10. Generalized Maxwell Model (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020)   

At time 𝑡𝑡 = 0, the instantaneous modulus, 𝐸𝐸0, can be determined as: 
 

𝐸𝐸0 = 𝐸𝐸∞ + ∑ 𝐸𝐸𝑗𝑗𝑁𝑁
𝑗𝑗=1  (22) 

 
where 𝐸𝐸∞ = 𝐸𝐸0�1 − ∑ 𝛼𝛼𝑗𝑗𝑁𝑁

𝑗𝑗=1 �, and 𝛼𝛼𝑗𝑗 = 𝐸𝐸𝑗𝑗
𝐸𝐸0

 represents the relative modulus of term 𝑗𝑗. 
 
The Prony series representation of viscoelastic material behavior is incorporated into nearly 
every state-of-the-art FE software, including ABAQUS, and plays a vital role in the 
characterization of viscoelastic materials. 
 
2.4.2  Numerical Model Development and Viscoelastic Stress Decomposition 

The development of a numerical model commences with the general integral representation of 
linear viscoelasticity, using Equation 20 to decompose the stress into elastic and viscoelastic 
components (Kaliske & Rothert, 1997). 
 

𝜎𝜎𝑡𝑡+Δ𝑡𝑡 = 𝜎𝜎∞𝑡𝑡+Δ𝑡𝑡 + ∑ 𝑀𝑀𝑗𝑗𝑡𝑡+Δ𝑡𝑡𝑁𝑁
𝑗𝑗=1  (23) 

 
The equation above is reformulated in the following manner: 
 

𝜎𝜎𝑡𝑡+Δ𝑡𝑡 = 𝑉𝑉𝐷𝐷�𝜀𝜀𝑡𝑡+Δ𝑡𝑡 − 𝑞𝑞𝑡𝑡 (24) 
 
Here, 𝑉𝑉 represents the viscoelastic tangent modulus multiplier, and 𝑞𝑞𝑡𝑡 is a stress vector 
dependent on variables known at the start of the time step. 𝑀𝑀𝑗𝑗𝑡𝑡+Δ𝑡𝑡 signifies the internal stress 
variables. It is evident that 𝑞𝑞 needs to be incorporated into the right-hand side of the equation of 
motion and can be regarded as a pseudo-load vector. 
 

𝑉𝑉 = 𝐸𝐸0�1 − ∑ 𝑂𝑂𝑗𝑗𝑁𝑁
𝑗𝑗=1 � (25) 
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𝑂𝑂𝑗𝑗 = 𝛼𝛼𝑗𝑗
𝜏𝜏𝑗𝑗
Δ𝑡𝑡
�Δ𝑡𝑡
𝜏𝜏𝑗𝑗

+ 𝑒𝑒
−Δ𝑡𝑡𝜏𝜏𝑗𝑗 − 1� (26) 

𝑞𝑞𝑡𝑡 = ∑ �𝛼𝛼𝑗𝑗
1−𝑒𝑒

−Δ𝑡𝑡𝜏𝜏𝑗𝑗

Δ𝑡𝑡
𝜏𝜏𝑗𝑗

𝐷𝐷�𝐸𝐸0𝜀𝜀𝑡𝑡 − 𝑒𝑒
−Δ𝑡𝑡𝜏𝜏𝑗𝑗𝑀𝑀𝑗𝑗𝑡𝑡�𝑁𝑁

𝑗𝑗=1  (27) 

𝑀𝑀𝑗𝑗𝑡𝑡 = 𝑒𝑒
−Δ𝑡𝑡𝜏𝜏𝑗𝑗𝑀𝑀𝑗𝑗𝑡𝑡−Δ𝑡𝑡 + 𝛼𝛼𝑗𝑗

1−𝑒𝑒
−Δ𝑡𝑡𝜏𝜏𝑗𝑗

Δ𝑡𝑡
𝜏𝜏𝑗𝑗

𝐷𝐷�𝐸𝐸0(𝜀𝜀𝑡𝑡 − 𝜀𝜀𝑡𝑡−Δ𝑡𝑡) (28) 

 
2.5  FINITE ELEMENT FORMULATION FOR LINEAR AXISYMMETRIC TRIANGULAR 
ELEMENTS 

This section demonstrates the FE formulation for a straightforward linear three-noded 
axisymmetric triangular element. It is worth noting that all axisymmetric solid elements exhibit 
an annular shape, even though the element integrals are calculated within the 2D section. 
 
2.5.1  Finite Element Mesh Generation and Structured vs Unstructured Meshes 

First, discretizing the problem domain involves dividing it into a union of elements, which can 
consist of a single type or a combination of different types. This union of elements forms what is 
commonly referred to as the FE mesh. The process of creating an FE mesh is often termed mesh 
generation (Zienkiewicz, Taylor, & Zhu, 2013). 
 
A mesh with a high degree of ordering, such as a Cartesian grid, is classified as structured, while 
a mesh without this level of order is referred to as unstructured. Figure 11 illustrates an example 
of 2D structured and unstructured meshes (Woodbury, 2008). 

 

 

Figure 11. Two-Dimensional Structured (Left) and Unstructured (Right) Meshes (Bazi, Gagnon, 
Sebaaly, & Ullidtz, 2020) 

Most unstructured mesh generation methods are designed to create triangular elements in 2D and 
tetrahedral elements in 3D (referred to as simplex forms). These simplex forms offer a 
straightforward discretization of 2D and 3D domains of varying shapes, especially when meshes 
with different element sizes in various regions of the domain are needed. Numerous automatic 
unstructured mesh generation algorithms are available, with the most widely used algorithms 
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being based on one or a combination of the three fundamentally distinctive methods 
(Zienkiewicz, Taylor, & Zhu, 2013), which are: (1) the Delaunay triangulation method, (2) the 
advancing-front method, and (3) the tree methods (the finite quadtree method in 2D and the finite 
octree method in 3D).  

2.5.1.1  Selection of 2D Elements for Axisymmetric Analysis 

In axisymmetric cases, any 2D element can be used. Figure 12 illustrates the most common 
linear and higher-order (quadratic) triangular and quadrilateral elements. 

Figure 12. Linear and Quadratic Triangular and Quadrilateral Elements 
(Bazi, Gagnon, Sebaaly, & Ullidtz, 2020) 

2.5.1.2  Modeling Infinite Media in FE Analysis 

In generating an FE model, three methods are commonly employed to replicate infinite media. 
These methods are: (1) the far boundary, (2) the infinite element boundary, and (3) the viscous 
damping boundary.  

The far boundary method, as the name implies, involves shifting the boundary a considerable 
distance away from the center of the structure until the boundary’s influence becomes negligible. 
The infinite element boundary method emulates unbounded soil boundaries (see Figure 13) by 
employing specialized shape functions, which cause the nodes on the boundary side to extend 
infinitely (Cook, 1995). 

The viscous damping boundary method uses a series of viscous dampers to absorb the radiating 
wave energy.  

(a) (b) (c) (d) 
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Figure 13. Infinite Elements Attached to Boundary of Standard FE Mesh 
(Bazi, Gagnon, Sebaaly, & Ullidtz, 2020) 

2.5.2  Discretization of the Displacement Field 

Figure 14 displays an axisymmetric linear triangular element. This element comprises three 
nodes, each with two degrees of freedom per node (𝑢𝑢𝑖𝑖 and 𝑤𝑤𝑖𝑖). 

The element adopts linear displacement functions, as defined in Logan (2017): 

𝑢𝑢(𝑟𝑟, 𝑧𝑧) = 𝑎𝑎1 + 𝑎𝑎2𝑟𝑟 + 𝑎𝑎3𝑧𝑧 (29) 
𝑤𝑤(𝑟𝑟, 𝑧𝑧) = 𝑎𝑎4 + 𝑎𝑎5𝑟𝑟 + 𝑎𝑎6𝑧𝑧 (30) 

Figure 14. Axisymmetric Three-Noded Triangular Element (Oñate, 2009) 

The total number of introduced generalized coordinates 𝑎𝑎𝑖𝑖 in the displacement functions matches 
the total number of degrees of freedom for the element. The generalized coordinates represent 
the displacement amplitudes. The nodal displacements for nodes 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘 are as follows: 
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{𝑑𝑑} = �
{𝑑𝑑𝑖𝑖}
�𝑑𝑑𝑗𝑗�
{𝑑𝑑𝑘𝑘}

� =

⎩
⎪
⎨

⎪
⎧
𝑢𝑢𝑖𝑖
𝑤𝑤𝑖𝑖
𝑢𝑢𝑗𝑗
𝑤𝑤𝑗𝑗
𝑢𝑢𝑘𝑘
𝑤𝑤𝑘𝑘⎭
⎪
⎬

⎪
⎫

 (31) 

 
and 𝑢𝑢 and 𝑤𝑤 evaluated at node 𝑖𝑖 as: 
 

𝑢𝑢(𝑟𝑟𝑖𝑖, 𝑧𝑧𝑖𝑖) = 𝑢𝑢𝑖𝑖 = 𝑎𝑎1 + 𝑎𝑎2𝑟𝑟𝑖𝑖 + 𝑎𝑎3𝑧𝑧𝑖𝑖 (32) 
𝑤𝑤(𝑟𝑟𝑖𝑖, 𝑧𝑧𝑖𝑖) = 𝑤𝑤𝑖𝑖 = 𝑎𝑎4 + 𝑎𝑎5𝑟𝑟𝑖𝑖 + 𝑎𝑎6𝑧𝑧𝑖𝑖 (33) 
 

The displacement function is then expressed in a matrix form: 
 

{𝜓𝜓} = �𝑢𝑢𝑤𝑤� = �
𝑎𝑎1 + 𝑎𝑎2𝑟𝑟 + 𝑎𝑎3𝑧𝑧
𝑎𝑎4 + 𝑎𝑎5𝑟𝑟 + 𝑎𝑎6𝑧𝑧

� = �1 𝑟𝑟 𝑧𝑧 0 0 0
0 0 0 1 𝑟𝑟 𝑧𝑧�

⎩
⎪
⎨

⎪
⎧
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4
𝑎𝑎5
𝑎𝑎6⎭
⎪
⎬

⎪
⎫

 (34) 

 
a1 through a6 can be determined by substituting the coordinates of the nodal points in the above 
equation, and performing the inversion operations: 

 

�
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = �

1 𝑟𝑟𝑖𝑖 𝑧𝑧𝑖𝑖
1 𝑟𝑟𝑗𝑗 𝑧𝑧𝑗𝑗
1 𝑟𝑟𝑘𝑘 𝑧𝑧𝑘𝑘

�

−1

�
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗
𝑢𝑢𝑘𝑘
� = 1

2𝐴𝐴
�
𝛼𝛼𝑖𝑖 𝛼𝛼𝑗𝑗 𝛼𝛼𝑘𝑘
𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 𝛽𝛽𝑘𝑘
𝛾𝛾𝑖𝑖 𝛾𝛾𝑗𝑗 𝛾𝛾𝑘𝑘

� �
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗
𝑢𝑢𝑘𝑘
� (35) 

 

�
𝑎𝑎4
𝑎𝑎5
𝑎𝑎6
� = �

1 𝑟𝑟𝑖𝑖 𝑧𝑧𝑖𝑖
1 𝑟𝑟𝑗𝑗 𝑧𝑧𝑗𝑗
1 𝑟𝑟𝑘𝑘 𝑧𝑧𝑘𝑘

�

−1

�
𝑤𝑤𝑖𝑖
𝑤𝑤𝑗𝑗
𝑤𝑤𝑘𝑘

� = 1
2𝐴𝐴
�
𝛼𝛼𝑖𝑖 𝛼𝛼𝑗𝑗 𝛼𝛼𝑘𝑘
𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 𝛽𝛽𝑘𝑘
𝛾𝛾𝑖𝑖 𝛾𝛾𝑗𝑗 𝛾𝛾𝑘𝑘

� �
𝑤𝑤𝑖𝑖
𝑤𝑤𝑗𝑗
𝑤𝑤𝑘𝑘

� (36) 

 
 

 𝛼𝛼𝑖𝑖 = 𝑟𝑟𝑗𝑗𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑗𝑗𝑟𝑟𝑘𝑘  𝛼𝛼𝑗𝑗 = 𝑟𝑟𝑘𝑘𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑘𝑘𝑟𝑟𝑖𝑖  𝛼𝛼𝑘𝑘 = 𝑟𝑟𝑖𝑖𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖𝑟𝑟𝑗𝑗 
𝛽𝛽𝑖𝑖 = 𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑘𝑘   𝛽𝛽𝑗𝑗 = 𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑖𝑖   𝛽𝛽𝑘𝑘 = 𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗 
𝛾𝛾𝑖𝑖 = 𝑟𝑟𝑘𝑘 − 𝑟𝑟𝑗𝑗   𝛾𝛾𝑗𝑗 = 𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑘𝑘   𝛾𝛾𝑘𝑘 = 𝑟𝑟𝑗𝑗 − 𝑟𝑟𝑖𝑖 
 

Area of triangular element 𝐴𝐴 = 1
2
�
1 𝑟𝑟𝑖𝑖 𝑧𝑧𝑖𝑖
1 𝑟𝑟𝑗𝑗 𝑧𝑧𝑗𝑗
1 𝑟𝑟𝑘𝑘 𝑧𝑧𝑘𝑘

� 

 
 
The shape functions 𝑁𝑁𝑖𝑖, 𝑁𝑁𝑗𝑗, and 𝑁𝑁𝑘𝑘, commonly referred to as interpolation or blending functions, 
depict how the field variable varies within the FE (Hutton, 2004). Figure 15 demonstrates the 
shape functions, and they are defined as follows: 
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𝑁𝑁𝑖𝑖 = 1

2𝐴𝐴
(𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑟𝑟 + 𝛾𝛾𝑖𝑖𝑧𝑧) (37) 

 
𝑁𝑁𝑗𝑗 = 1

2𝐴𝐴
�𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑟𝑟 + 𝛾𝛾𝑗𝑗𝑧𝑧� (38) 

 
𝑁𝑁𝑘𝑘 = 1

2𝐴𝐴
(𝛼𝛼𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑟𝑟 + 𝛾𝛾𝑘𝑘𝑧𝑧) (39) 

 
 

𝑢𝑢(𝑟𝑟, 𝑧𝑧) = 𝑎𝑎1 + 𝑎𝑎2𝑟𝑟 + 𝑎𝑎3𝑧𝑧 = 𝑁𝑁𝑖𝑖𝑢𝑢𝑖𝑖+𝑁𝑁𝑗𝑗𝑢𝑢𝑗𝑗+𝑁𝑁𝑘𝑘𝑢𝑢𝑘𝑘 (40) 
 
𝑤𝑤(𝑟𝑟, 𝑧𝑧) = 𝑎𝑎4 + 𝑎𝑎5𝑟𝑟 + 𝑎𝑎6𝑧𝑧 = 𝑁𝑁𝑖𝑖𝑤𝑤𝑖𝑖+𝑁𝑁𝑗𝑗𝑤𝑤𝑗𝑗+𝑁𝑁𝑘𝑘𝑤𝑤𝑘𝑘 (41) 

 
 

 
Figure 15. Shape Functions Ni, Nj, and Nk for Three-Noded Triangular Element (Bazi, Gagnon, 

Sebaaly, & Ullidtz, 2020) 

The general displacement function is expressed in terms of the shape functions: 
 

{𝜓𝜓} = �𝑢𝑢𝑤𝑤� = �
𝑁𝑁𝑖𝑖 0 𝑁𝑁𝑗𝑗 0 𝑁𝑁𝑘𝑘 0
0 𝑁𝑁𝑖𝑖 0 𝑁𝑁𝑗𝑗 0 𝑁𝑁𝑘𝑘

�

⎩
⎪
⎨

⎪
⎧
𝑢𝑢𝑖𝑖
𝑤𝑤𝑖𝑖
𝑢𝑢𝑗𝑗
𝑤𝑤𝑗𝑗
𝑢𝑢𝑘𝑘
𝑤𝑤𝑘𝑘⎭
⎪
⎬

⎪
⎫

= [𝑁𝑁]{𝑑𝑑} (42) 

 
2.5.3  Discretization of the Strain and Stress Fields 

The strain vector is related to the nodal displacements using the gradient matrix, as defined 
below: 
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𝜀𝜀 = �

𝜀𝜀𝑟𝑟
𝜀𝜀𝑧𝑧
𝜀𝜀𝜃𝜃
𝛾𝛾𝑟𝑟𝑟𝑟

� =

⎩
⎪
⎨

⎪
⎧

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢
𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⎭
⎪
⎬

⎪
⎫

=

⎩
⎨

⎧
𝑎𝑎2
𝑎𝑎6

𝑎𝑎1
𝑟𝑟

+ 𝑎𝑎2 + 𝑎𝑎3𝑧𝑧
𝑟𝑟

𝑎𝑎3 + 𝑎𝑎5 ⎭
⎬

⎫
=

⎣
⎢
⎢
⎡
0 1 0 0 0 0
0 0 0 0 0 1
1
𝑟𝑟

1 𝑧𝑧
𝑟𝑟

0 0 0
0 0 1 0 1 0⎦

⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4
𝑎𝑎5
𝑎𝑎6⎭
⎪
⎬

⎪
⎫

 (43) 

 
 

𝜀𝜀 = �

𝜀𝜀𝑟𝑟
𝜀𝜀𝑧𝑧
𝜀𝜀𝜃𝜃
𝛾𝛾𝑟𝑟𝑟𝑟

� = 1
2𝐴𝐴

⎣
⎢
⎢
⎢
⎡

𝛽𝛽𝑖𝑖 0 𝛽𝛽𝑗𝑗 0 𝛽𝛽𝑘𝑘 0
0 𝛾𝛾𝑖𝑖 0 𝛾𝛾𝑗𝑗 0 𝛾𝛾𝑘𝑘

𝛼𝛼𝑖𝑖
𝑟𝑟

+ 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑧𝑧
𝑟𝑟

0 𝛼𝛼𝑗𝑗
𝑟𝑟

+ 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗𝑧𝑧
𝑟𝑟

0 𝛼𝛼𝑘𝑘
𝑟𝑟

+ 𝛽𝛽𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑧𝑧
𝑟𝑟

0
𝛾𝛾𝑖𝑖 𝛽𝛽𝑖𝑖 𝛾𝛾𝑗𝑗 𝛽𝛽𝑗𝑗 𝛾𝛾𝑘𝑘 𝛽𝛽𝑘𝑘⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑢𝑢𝑖𝑖
𝑤𝑤𝑖𝑖
𝑢𝑢𝑗𝑗
𝑤𝑤𝑗𝑗
𝑢𝑢𝑘𝑘
𝑤𝑤𝑘𝑘⎭
⎪
⎬

⎪
⎫

 (44) 

 

𝜀𝜀 = �

𝜀𝜀𝑟𝑟
𝜀𝜀𝑧𝑧
𝜀𝜀𝜃𝜃
𝛾𝛾𝑟𝑟𝑟𝑟

� = �[𝐵𝐵𝑖𝑖]�𝐵𝐵𝑗𝑗�[𝐵𝐵𝑘𝑘]�

⎩
⎪
⎨

⎪
⎧
𝑢𝑢𝑖𝑖
𝑤𝑤𝑖𝑖
𝑢𝑢𝑗𝑗
𝑤𝑤𝑗𝑗
𝑢𝑢𝑘𝑘
𝑤𝑤𝑘𝑘⎭
⎪
⎬

⎪
⎫

= [𝐵𝐵]{𝑑𝑑} (45) 

 
 

[𝐵𝐵] = �[𝐵𝐵𝑖𝑖]�𝐵𝐵𝑗𝑗�[𝐵𝐵𝑘𝑘]�    𝐵𝐵𝑖𝑖 = 1
2𝐴𝐴

⎣
⎢
⎢
⎢
⎡

𝛽𝛽𝑖𝑖 0
0 𝛾𝛾𝑖𝑖

𝛼𝛼𝑖𝑖
𝑟𝑟

+ 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑧𝑧
𝑟𝑟

0
𝛾𝛾𝑖𝑖 𝛽𝛽𝑖𝑖⎦

⎥
⎥
⎥
⎤
 

 

 
[𝐵𝐵] is called the gradient matrix, and 𝐵𝐵𝑗𝑗 and 𝐵𝐵𝑘𝑘 can be obtained from 𝐵𝐵𝑖𝑖 by replacing the 𝑖𝑖 
subscript by 𝑗𝑗 and 𝑘𝑘, respectively. It is important to note that [𝐵𝐵] is a function of 𝑟𝑟 and 𝑧𝑧, also 
indicating that 𝜀𝜀𝜃𝜃 is not constant and varies with the polar coordinates. 
 
The stress is then calculated using the following formula, where [𝑫𝑫] is the elasticity matrix, [𝐵𝐵] 
is the gradient matrix and {𝑑𝑑} is the nodal displacements vector. 
  

𝝈𝝈 = 𝑫𝑫𝜀𝜀 = [𝑫𝑫][𝐵𝐵]{𝑑𝑑} (46) 
 
2.5.4  Formulation of FE Equations for Dynamic Analysis 

Three primary methods exist for deriving the FE equations of a physical system:  
 

(1) The direct method, or direct equilibrium method, commonly applied to structural analysis 
problems 

(2) Variational methods, which encompass subsets like energy methods and the principle of 
virtual work  

(3) Weighted residual methods 
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The equations of equilibrium governing the dynamic response of a system of FEs are represented 
as follows (Bathe, 2014): 
 

𝑴𝑴𝑼̈𝑼 + 𝑪𝑪𝑼̇𝑼 + 𝑲𝑲𝑲𝑲 = 𝑹𝑹 (47) 
 
Here, 𝑴𝑴, 𝑪𝑪, and 𝑲𝑲 are the mass, damping, and stiffness matrices, respectively. 𝑹𝑹 is the vector of 
externally applied loads, and 𝑼̈𝑼, 𝑼̇𝑼, and 𝑼𝑼 are the acceleration, velocity, and displacement vectors 
of the FE assembly. The damping matrix is often expressed simply as proportional of the mass 
and stiffness matrices, known as proportional damping. The equation can be further expressed 
as: 
 

𝑭𝑭𝑰𝑰(𝒕𝒕) + 𝑭𝑭𝑫𝑫(𝒕𝒕) + 𝑭𝑭𝑬𝑬(𝒕𝒕) = 𝑹𝑹(𝒕𝒕) (48) 
 
Where 𝑭𝑭𝑰𝑰(𝒕𝒕) represents the inertia forces, 𝑭𝑭𝑰𝑰(𝒕𝒕) = 𝑴𝑴𝑼̈𝑼; 𝑭𝑭𝑫𝑫(𝒕𝒕) represents the damping forces, 
𝑭𝑭𝑫𝑫(𝒕𝒕) = 𝑪𝑪𝑼̇𝑼; and 𝑭𝑭𝑬𝑬(𝒕𝒕) represents the elastic forces, 𝑭𝑭𝑬𝑬(𝒕𝒕) = 𝑲𝑲𝑲𝑲, all of which are time-
dependent. Therefore, in dynamic analysis, static equilibrium at time 𝒕𝒕 is considered, 
incorporating the effects of acceleration-dependent inertia forces and velocity-dependent 
damping forces. In contrast, static analysis neglects the effects of inertia and damping. 
 
2.5.5  Stiffness Matrix 

The element stiffness matrix is calculated as follows: 
 

[𝑘𝑘] = ∭ [𝐵𝐵]𝑇𝑇[𝐷𝐷][𝐵𝐵]𝑑𝑑𝑑𝑑⬚
𝑉𝑉 = 2𝜋𝜋∬ [𝐵𝐵]𝑇𝑇[𝐷𝐷][𝐵𝐵]𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⬚

𝐴𝐴  (49) 
 

2.5.6  Mass Matrix 

The element mass matrix is calculated as follows: 
 

[𝑚𝑚] = ∭ 𝜌𝜌[𝑁𝑁]𝑇𝑇[𝑁𝑁]𝑑𝑑𝑑𝑑⬚
𝑉𝑉 = 2𝜋𝜋∬ 𝜌𝜌[𝑁𝑁]𝑇𝑇[𝑁𝑁]𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⬚

𝐴𝐴  (50) 
 
The consistent-mass matrix of order 6×6 for a linear triangular element is given by: 
 

[𝑚𝑚] = 𝜋𝜋𝜋𝜋𝜋𝜋
10

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
4
3
𝑟𝑟1 + 2𝑟̅𝑟 0 2𝑟̅𝑟 − 𝑟𝑟3

3
0 2𝑟̅𝑟 − 𝑟𝑟2

3
0

⬚ 4
3
𝑟𝑟1 + 2𝑟̅𝑟 0 2𝑟̅𝑟 − 𝑟𝑟3

3
0 2𝑟̅𝑟 − 𝑟𝑟2

3

⬚ ⬚ 4
3
𝑟𝑟2 + 2𝑟̅𝑟 0 2𝑟̅𝑟 − 𝑟𝑟1

3
0

⬚ ⬚ ⬚ 4
3
𝑟𝑟2 + 2𝑟̅𝑟 0 2𝑟̅𝑟 − 𝑟𝑟1

3

⬚ ⬚ ⬚ ⬚ 4
3
𝑟𝑟3 + 2𝑟̅𝑟 0

𝑠𝑠𝑠𝑠. ⬚ ⬚ ⬚ ⬚ 4
3
𝑟𝑟3 + 2𝑟̅𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (51) 
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where 𝜌𝜌 is the density; and 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 are the radial coordinates of nodes 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘, 
respectively. 
 

 

𝑟̅𝑟 =
𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟3

3
 

 
The lumped matrix, which is a diagonal matrix, is obtained by adding each row of the consistent 
matrix onto the diagonal. ABAQUS uses the lumped mass matrix for the first-order triangular 
elements, as it gives more accurate results in numerical experiments that calculate the natural 
frequencies of simple models. 
  
2.5.7  Damping Matrix 

Damping is considered in the form of Rayleigh damping, where the damping matrix is formed as 
a linear combination of the mass and the stiffness matrices using the Rayleigh damping 
coefficients 𝛼𝛼𝑅𝑅 and 𝛽𝛽𝑅𝑅. 
 

[𝑐𝑐] = 𝛼𝛼𝑅𝑅[𝑚𝑚] + 𝛽𝛽𝑅𝑅[𝑘𝑘] (52) 
 

2.5.8  Surface Forces 

The nodal force vector includes the body and surface forces, where the surface force is used to 
simulate an FWD load in accordance with the following formula: 
 

{𝑓𝑓𝑠𝑠} = ∬ [𝑁𝑁𝑠𝑠]𝑇𝑇{𝑇𝑇}𝑑𝑑𝑑𝑑⬚
𝑆𝑆  (53) 

 
where [𝑁𝑁𝑠𝑠] denotes the shape function matrix evaluated along the surface where the surface 
traction {𝑇𝑇} acts. 
 
The nodal forces for an asymmetric first-order triangular element due to a surface traction are 
illustrated in Figure 16 and calculated using the following formulas for a unit pressure: 
 

𝐹𝐹1 = 2𝜋𝜋
6

(𝑟𝑟12 + 𝑟𝑟0𝑟𝑟1 − 2𝑟𝑟02) (54) 
 
𝐹𝐹2 = 2𝜋𝜋

6
(2𝑟𝑟12 − 𝑟𝑟0𝑟𝑟1 − 𝑟𝑟02) (55) 
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Figure 16. Nodal Forces Due to Surface Traction (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020) 

2.6  TRANSIENT DYNAMIC ANALYSIS 

Two effective procedures for transient dynamic analysis are proposed: (1) direct integration and 
(2) mode superposition, commonly used in the frequency domain. 
 
In direct integration, the equations of equilibrium are integrated using a numerical step-by-step 
procedure, where the term direct means that prior to the numerical integration, no transformation 
of the equations into a different form is carried out. There are two main types of direct 
integration method: implicit and explicit. Implicit methods are generally more efficient for a 
relatively slow phenomenon, and explicit methods are more efficient for a very fast phenomenon, 
such as impact and explosion loadings (Bathe, 2014).  
Different direct integration schemes are available, such as the central difference method, the 
Houbolt method, the Newmark (1959) integration procedure, and the Bathe method (Bathe, 
2014). The central difference and Newmark methods are the most used methods. 
 
In the central difference algorithm, the solutions (displacement, velocity, and acceleration) are 
obtained without solving any matrix form of system equations, which is therefore considered an 
explicit method. The time marching in explicit methods is therefore extremely fast, and the 
coding is also very straightforward. It is particularly suited for simulating highly nonlinear, large 
deformation, contact, and extremely fast events of mechanics. The central difference method, 
like most explicit methods, is conditionally stable, meaning that the time step ∆𝑡𝑡 must be lower 
than a critical time step in order not to make the computed solution unstable. 
 
Newmark’s method is the most widely used implicit algorithm. The procedure involves matrix 
inversion that is analogous to solving a matrix of equations. This makes it an implicit method, 
meaning that one needs to solve a set of linear algebraic equations to obtain a solution at every 
time step. Because at each time step, the matrix system must be solved, which can be very time-
consuming, the implicit algorithm is a very slow time stepping process. Newmark’s method, like 
most implicit methods, is unconditionally stable. Unconditionally stable methods are those in 
which the size of the time step, ∆𝑡𝑡, will not affect the stability of the solution, but rather it is 
governed by accuracy considerations. 
 
Oller (2014) compared an explicit solution with an implicit one, and provided the following 
aspects: 
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Explicit time integration methods:  
 

1. The solution algorithm is simple in terms of logic and structure, and it allows carrying 
out a simple treatment of the different nonlinearities. 

2. It requires less memory storage. 
3. It does not need expensive tangent operators that are usually found in implicit 

methods. 
4. The explicit methods lead to reliable algorithms. 
5. The solution time increment is bounded, requiring small time steps for analysis. This 

makes the solution at very large time domains time-consuming. 
 
Implicit time integration methods: 
 

1. The implicit methods are very robust and stable. 
2. The time increments can be much larger than in explicit methods, preserving the 

solution stability. 
3. They allow more precise solutions with lower error tolerances. 
4. A relative drawback is the linearization of the solution through Newton-Raphson, 

which requires tangent operators that are usually very difficult to obtain. 
5. Another drawback is the large storage demand when using direct solution methods for 

the system of equations. 
 
Because of the robustness of the implicit methods, the Newmark’s method is illustrated in the 
following section. 
 
2.6.1.1  Newmark-β Method 

In 1959, N. M. Newmark developed a family of time-stepping methods based on the following 
equations: 

 
𝑴𝑴 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 + 𝑪𝑪 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 +  𝑲𝑲 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 𝑹𝑹⬚
𝑡𝑡+∆𝑡𝑡  (56) 

 
𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 𝑼𝑼⬚
𝑡𝑡 + 𝑼̇𝑼⬚

𝑡𝑡 ∆𝑡𝑡 + ��1
2
− 𝛽𝛽� 𝑼̈𝑼⬚

𝑡𝑡 + 𝛽𝛽 𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡 � ∆𝑡𝑡2 (57) 

 
𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 𝑼̇𝑼⬚
𝑡𝑡 + �(1 − 𝛾𝛾) 𝑼̈𝑼⬚

𝑡𝑡 + 𝛾𝛾 𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡 �∆𝑡𝑡 (58) 

 
The integration parameters 𝛽𝛽 and 𝛾𝛾 determine the stability, accuracy, dissipative and dispersion 
characteristics of the system. For linear systems, unconditional stability is achieved when 2𝛽𝛽 ≥
𝛾𝛾 ≥ 1

2
 , and second-order accuracy is obtained for 𝛾𝛾 = 1

2
 , i.e., the error decreases proportional to 

∆t2. For 𝛾𝛾 ≥ 1
2
  and 2𝛽𝛽 < 𝛾𝛾, conditional stability is obtained, when the time step is limited to a 

critical value (De Borst et al., 2012).  
 
Several well-known time integration schemes can be conceived as special cases of the Newmark 
family. For 𝛽𝛽 = 1

4
  and = 1

2
 , the average acceleration scheme, or trapezoidal rule is obtained, 
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which is unconditionally stable and second-order accurate in the time step (Figure 17). Other 
implicit schemes are obtained for 𝛽𝛽 = 1

6
  and = 1

2
 , the linear acceleration scheme, and for 𝛽𝛽 = 1

12
  

and 𝛾𝛾 = 1
2
 , the Fox–Goodwin scheme. Neither scheme, although each has an implicit format, is 

unconditionally stable, and the time step is limited to a critical value. Also, some explicit 
integration schemes can be considered as special cases of the Newmark family, for instance the 
central difference scheme, which is obtained for 𝛽𝛽 = 0  and = 1

2
 . 

 

 

Figure 17. Newmark’s Constant-Average Acceleration Scheme (Bazi, Gagnon, Sebaaly, & 
Ullidtz, 2020) 

The Newmark displacement 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡  and velocity 𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡  equations is rearranged to obtain 
𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡  and 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡  as a function of 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 . 
 

𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 = − 𝛾𝛾

𝛽𝛽∆𝑡𝑡
𝑼𝑼⬚
𝑡𝑡 + �1 − 𝛾𝛾

𝛽𝛽
� 𝑼̇𝑼⬚

𝑡𝑡 + ∆𝑡𝑡 �1 − 𝛾𝛾
2𝛽𝛽
� 𝑼̈𝑼⬚

𝑡𝑡 + 𝛾𝛾
𝛽𝛽∆𝑡𝑡

𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡  (59) 

 
𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 1
𝛽𝛽∆𝑡𝑡2

�− 𝑼𝑼⬚
𝑡𝑡 − ∆𝑡𝑡 𝑼̇𝑼⬚

𝑡𝑡 −  ∆𝑡𝑡2 �1
2
− 𝛽𝛽� 𝑼̈𝑼⬚

𝑡𝑡 + 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 � (60) 

 
The former two equations are rewritten as a function of the integration constants 𝑎𝑎0 through 𝑎𝑎7 
to simplify the calculations: 

  
𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 𝑼̇𝑼⬚
𝑡𝑡 + 𝑎𝑎6 𝑼̈𝑼⬚

𝑡𝑡 + 𝑎𝑎7 𝑼̈𝑼 = 𝑎𝑎1� 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 − 𝑼𝑼⬚

𝑡𝑡 � − 𝑎𝑎4 𝑼̇𝑼⬚
𝑡𝑡 − 𝑎𝑎5 𝑼̈𝑼⬚

𝑡𝑡
⬚

𝑡𝑡+∆𝑡𝑡  (61) 
 

𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡 = 𝑎𝑎0� 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑼𝑼⬚
𝑡𝑡 � − 𝑎𝑎2 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎3 𝑼̈𝑼⬚
𝑡𝑡  (62) 

 
 

𝑎𝑎0 = 1
𝛽𝛽∆𝑡𝑡2

 | 𝑎𝑎1 = 𝑎𝑎0𝑎𝑎7 = 𝛾𝛾
𝛽𝛽∆𝑡𝑡

 | 𝑎𝑎2 = 1
𝛽𝛽∆𝑡𝑡

 | 𝑎𝑎3 = 1
2𝛽𝛽
− 1 

 
𝑎𝑎4 = 𝑎𝑎2𝑎𝑎7 − 1 = 𝛾𝛾

𝛽𝛽
− 1   |     𝑎𝑎5 = 𝑎𝑎3𝑎𝑎7 − 𝑎𝑎6 = ∆𝑡𝑡

2
�𝛾𝛾
𝛽𝛽
− 2�    |   𝑎𝑎6 = (1 − 𝛾𝛾)∆𝑡𝑡   | 𝑎𝑎7 = 𝛾𝛾∆𝑡𝑡 

 
 
Replacing 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡  and 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡  as a function of 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡  in the general equation of motion (equation 
56), the new equation becomes: 
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𝑴𝑴�𝑎𝑎0 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑎𝑎0 𝑼𝑼⬚
𝑡𝑡 − 𝑎𝑎2 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎3 𝑼̈𝑼⬚
𝑡𝑡 � + 𝑪𝑪�𝑎𝑎1 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑎𝑎1 𝑼𝑼⬚
𝑡𝑡 − 𝑎𝑎4 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎5 𝑼̈𝑼⬚
𝑡𝑡 � + (63) 

𝑲𝑲 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 = 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡   
 

which is rewritten in the following effective form: 
 

𝐾𝐾� 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 = 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡  (64) 
 
where 𝐾𝐾� is the effective (tangential) stiffness matrix and 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡  is the effective load. 
 

𝐾𝐾� = 𝑎𝑎0𝑴𝑴 + 𝑎𝑎1𝑪𝑪 + 𝑲𝑲 (65) 
 

𝑹𝑹�⬚
𝑡𝑡+∆𝑡𝑡 =  𝑴𝑴�𝑎𝑎0 𝑼𝑼⬚

𝑡𝑡 + 𝑎𝑎2 𝑼̇𝑼⬚
𝑡𝑡 + 𝑎𝑎3 𝑼̈𝑼⬚

𝑡𝑡 � + 𝑪𝑪�𝑎𝑎1 𝑼𝑼⬚
𝑡𝑡 + 𝑎𝑎4 𝑼̇𝑼⬚

𝑡𝑡 + 𝑎𝑎5 𝑼̈𝑼⬚
𝑡𝑡 � + 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡   (66) 
 

The effective load is rewritten as follows to improve the efficiency by calculating the expressions 
between parentheses outside the time steps loop: 
 

𝑹𝑹�⬚
𝑡𝑡+∆𝑡𝑡 = (𝑎𝑎0𝑴𝑴+ 𝑎𝑎1𝑪𝑪) 𝑼𝑼⬚

𝑡𝑡 + (𝑎𝑎2𝑴𝑴 + 𝑎𝑎4𝑪𝑪) 𝑼̇𝑼⬚
𝑡𝑡 + (𝑎𝑎3𝑴𝑴 + 𝑎𝑎5𝑪𝑪) 𝑼̈𝑼⬚

𝑡𝑡 + 𝑹𝑹⬚
𝑡𝑡+∆𝑡𝑡  (67) 

 
After solving for 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 , 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡  and 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡  are calculated using 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 . The procedure then repeats, 

moving forward in time until arriving at the final desired time. 
 
The system of algebraic equations represented by Equation 64 can be solved at each time step for 
the unknown displacements, 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 . For a constant time step ∆𝑡𝑡, the effective stiffness matrix 𝐾𝐾� 
is constant and needs be computed only once. The effective load on the right-hand side, 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡 , 
must be updated at each time step. By back substitution through the appropriate equations, the 
velocities 𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡  and accelerations 𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡  are obtained. For the next time step, 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 , 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 , and 

𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡  are set equal to 𝑼̈𝑼⬚

𝑡𝑡 , 𝑼̇𝑼⬚
𝑡𝑡 , and 𝑼𝑼⬚

𝑡𝑡 , respectively. 
 
2.6.1.2  Hilber-Hughes-Taylor-α Method 

Numerical (artificial) dissipation can be desirable in a number of cases, e.g., to filter out the 
high-frequency modal components that are introduced by the spatial discretization. Numerical 
dissipation can be introduced in the Newmark scheme for 𝛾𝛾 > 1

2
. Unfortunately, the second-order 

accuracy is then lost. To avoid this problem, Hilber, Hughes, & Taylor (1977) developed the α-
method (HHT-α) with controllable numerical damping, while maintaining Newmark’s 
assumption that the acceleration varies linearly over the time step.  
 
The damping is the most valuable variable in the automatic time-stepping scheme, because the 
slight, high-frequency numerical noise inevitably introduced when the time step is changed is 
removed rapidly by a small amount of numerical damping. Each time step change introduces 
some slight noise or “ringing” into the solution; a little numerical damping quickly removes this 
high frequency noise without having any significant effect on the meaningful, lower frequency 
response (ABAQUS, 2019). 
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The α-method reduces to Newmark’s method for 𝛼𝛼 = 0, but introduces numerical dissipation for 
−1

3
< 𝛼𝛼 < 0, while second-order accuracy is preserved for 𝛽𝛽 = 1

4
(1 − 𝛼𝛼)2 and 𝛾𝛾 = 1

2
− 𝛼𝛼. 

ABAQUS sets 𝛼𝛼 = −0.05 in its implicit integration scheme for slight numerical damping or 
transient fidelity. 
 
The equation of motion for time steps can be written as (Hilber, Hughes, & Taylor, 1977): 
 
𝑴𝑴 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 + (1 + 𝛼𝛼)𝑪𝑪 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 −  𝑪𝑪 𝑼̇𝑼⬚

𝑡𝑡 + (1 + 𝛼𝛼)𝑲𝑲 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼𝑲𝑲 𝑼𝑼⬚

𝑡𝑡 = (1 + 𝛼𝛼) 𝑹𝑹⬚
𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼 𝑹𝑹⬚

𝑡𝑡    (68) 
 
Replacing 𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡  (Equation 61) and 𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡  (Equation 62) as a function of 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡  in Equation 68, 
the equation of motion becomes: 

 
𝑴𝑴�𝑎𝑎0 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑎𝑎0 𝑼𝑼⬚
𝑡𝑡 − 𝑎𝑎2 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎3 𝑼̈𝑼⬚
𝑡𝑡 � + (1 + 𝛼𝛼)𝑪𝑪�𝑎𝑎1 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑎𝑎1 𝑼𝑼⬚
𝑡𝑡 − 𝑎𝑎4 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎5 𝑼̈𝑼⬚
𝑡𝑡 � −

𝛼𝛼𝑪𝑪 𝑼̇𝑼⬚
𝑡𝑡 + (1 + 𝛼𝛼)𝑲𝑲 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼𝑲𝑲 𝑼𝑼⬚
𝑡𝑡 = (1 + 𝛼𝛼) 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼 𝑹𝑹⬚
𝑡𝑡  (69) 

 
which can be rewritten in the following effective form: 
 

𝐾𝐾� 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 = 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡  (70) 
 
where 𝐾𝐾� is the effective (tangential) stiffness matrix and 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡  is the effective load. 
 

𝐾𝐾� = 𝑎𝑎0𝑴𝑴 + 𝑎𝑎1(1 + 𝛼𝛼)𝑪𝑪 + (1 + 𝛼𝛼)𝑲𝑲 (71) 
 

𝑹𝑹�⬚
𝑡𝑡+∆𝑡𝑡 =  𝑴𝑴�𝑎𝑎0 𝑼𝑼⬚

𝑡𝑡 + 𝑎𝑎2 𝑼̇𝑼⬚
𝑡𝑡 + 𝑎𝑎3 𝑼̈𝑼⬚

𝑡𝑡 � + 𝑪𝑪�𝑎𝑎1(1 + 𝛼𝛼) 𝑼𝑼⬚
𝑡𝑡 + {𝑎𝑎4(1 + 𝛼𝛼) + 𝛼𝛼} 𝑼̇𝑼⬚

𝑡𝑡 +
𝑎𝑎5(1 + 𝛼𝛼) 𝑼̈𝑼⬚

𝑡𝑡 � + 𝛼𝛼𝑲𝑲 𝑼𝑼⬚
𝑡𝑡 + (1 + 𝛼𝛼) 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡  − 𝛼𝛼 𝑹𝑹⬚
𝑡𝑡   (72) 

 
The effective load can be written in the following form for computational efficiency: 
 

𝑹𝑹�⬚
𝑡𝑡+∆𝑡𝑡 = [𝑎𝑎0𝑴𝑴 + 𝑎𝑎1(1 + 𝛼𝛼)𝑪𝑪 + 𝛼𝛼𝑲𝑲] 𝑼𝑼⬚

𝑡𝑡 + [𝑎𝑎2𝑴𝑴 + {𝑎𝑎4(1 + 𝛼𝛼) + 𝛼𝛼}𝑪𝑪] 𝑼̇𝑼⬚
𝑡𝑡 + (73) 

[𝑎𝑎3𝑴𝑴 + 𝑎𝑎5(1 + 𝛼𝛼)𝑪𝑪] 𝑼̈𝑼⬚
𝑡𝑡 + (1 + 𝛼𝛼) 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡  − 𝛼𝛼 𝑹𝑹⬚
𝑡𝑡   

 
3.  FINITE ELEMENT MODULE 

PULSE_FE is programmed following the concepts outlined in Section 2 using the C# (C-Sharp) 
programming language in Microsoft® Visual Studio® Community. 
 
An input file is generated after meshing the pavement structure using Gmsh, which is an open-
source 2D and 3D FE mesh generator with a built-in computer-aided design (CAD) engine and 
post-processor (Geuzaine & Remacle, 2009). The input file is then manually processed before it 
becomes readily available for use by PULSE_FE. It should be noted that the input file has the 
same format as ABAQUS, making the validation process simpler. 
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PULSE_FE then reads the nodes’ coordinates and the elements’ connectivity from the input file 
and performs the static or dynamic analysis, based on the user’s preference, following the 
flowchart shown in Figure 18. 
 
The FE mass, damping, and stiffness matrices are sparse and are stored in a compressed sparse 
column format for reducing the storage requirements and for allowing faster matrices operations. 
 
PULSE_FE has no built-in system of units. All input data must be specified in consistent units, 
with examples shown in Table 1. The comparison between PULSE_FE and ABAQUS, described 
in Section 3.3, uses the U.S. Unit (inch) system.  
 
In the following sections, the mesh generator Gmsh is illustrated for a three-layer pavement 
structure. Then, the storage of the matrices using the different formats is discussed. Finally, the 
capabilities of the PULSE_FE module are demonstrated for a three-layer pavement structure 
under static and dynamic loading by comparing the results to the surface deflections obtained 
using ABAQUS. 
 

 

Figure 18. PULSE_FE Flowchart 
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Table 1. Consistent Units 

Quantity SI SI (mm) U.S. Unit (ft) U.S. Unit (in.) 
Length m mm ft in. 
Force N N lbf lbf 
Mass kg tonne (103 kg) slug lbf.s2/in. 
Time s s s s 
Stress Pa (N/m2) MPa (N/mm2) lbf/ft2 psi (lbf/in.2) 
Energy J mJ (10-3 J) lbf.ft lbf.in 
Density kg/m3 tonne/mm3 slug/ft3 lbf.s2/in.4 

J = Joules     mJ = Megajoule 
N = Newtons  
Pa = Pascal      MPa = MegaPascal 
SI = International System of Units 
 
3.1  GMSH 

The selection of a structured mesh versus a combination of structured and unstructured meshes 
depends on the modeling of the infinite media. The far boundary method that requires the use of 
an unstructured mesh is initially adopted. The use of triangular or quadrilateral elements in the 
infinite media is very time efficient since the size of the elements increases as they get closer to 
the far boundary and does not generate excessively large models.  
 
Figure 19 shows a thin flexible pavement sample model, consisting of a 3-inch AC layer, a 12-
inch aggregate base layer, and a subgrade layer that extends to 250 ft to simulate the infinite 
media using the far boundary method. The Front-Delaunay 2D algorithm is used to generate the 
mesh using Gmsh. A sensitivity analysis was performed to generate the optimal model, in terms 
of accuracy and mesh density. The elements are as small as a quarter of an inch under the load, 
and they grow monotonically to the far boundary. An unstructured mesh is selected because it is 
more appropriate for this model, where the elements expand proportionally with distance without 
producing distorted elements. 
 
This model consists of 19,560 nodes and 38,421 linear triangular elements. An equivalent 
structured mesh with quarter-inch elements would require 48,000 square elements or 96,000 
triangular elements for the two 200-inch-wide surface layers, and a much higher number of 
elements for the entire model.  
 
It is important to note that Gmsh (gmsh.info) has an application programming interface (API) 
that can be used to integrate it into PULSE_FE. 

 

https://gmsh.info/
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Figure 19. Thin Flexible Pavement Model Produced using Gmsh (Bazi, Saboundjian, Bou Assi, 

& Diab, 2020) 

3.2  MATRICES STORAGE 

A sparse matrix is one that is composed of mostly zero values. Sparse matrices are distinct from 
matrices with mostly non-zero values, which are referred to as dense matrices. A matrix is 
typically stored in a 2D array, where each element is identified by two indices representing the 
row and column indices. The amount of memory required to store large matrices is significant, 
therefore sparse matrices are typically stored in different formats. Sparse matrices reduce the 
memory required by storing only the non-zero elements and allow for faster matrices operations. 
The FE stiffness, damping, and mass matrices are sparse matrices because most of the elements 
are zeros. 
 
Different formats are available to store sparse matrices including, but not limited to, coordinate 
list (COO), compressed sparse row (CSR), and compressed sparse column (CSC). COO is a fast 
format for constructing the sparse matrices or generating the sparsity pattern. COO is then 
converted into CSR or CSC for efficient access and matrix operations. CSR is good for row-wise 
slicing, whereas CSC is good for column-wise slicing. 
 
The COO format stores the row indices, column indices, and values for the non-zero elements 
(nnz) in three arrays, where each array has a length equal to the number of the nnz. The CSR and 
CSC are similar to COO, but compress the row indices and the column indices, respectively. 
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The CSR has the same column indices and values arrays as the COO following a row-major 
sorting order. The third array is a row pointer having a length equal to nr + 1, where nr is the 
number of rows. The row pointer array has one element per row showing the index where the 
given row starts, and its last element is set equal to nnz. 
 
The CSC has the same row indices and values arrays as the COO following a column-major 
sorting order. The third array is a column pointer having a length equal to nc + 1, where nc is the 
number of columns. The column pointer array has one element per column showing the index 
where the given column starts, and its last element is set equal to nnz. 
 
Figure 20 shows an example of the COO, CSR, and CSC storage formats for a sparse matrix 
with 9 rows, 9 columns, and 10 non-zero elements. The row and column indices use zero-based 
indexing, i.e., the initial position in each array is zero.  
 

 0 1 2 3 4 5 6 7 8 

0 a      g  i 
1    c      
2  b        
3          
4    d    h  
5          
6          
7     e    j 
8      f    

 
COO Format: 

Row Index 0 2 1 4 7 8 0 4 0 7 
Column Index 0 1 3 3 4 5 6 7 8 8 

Value a b c d e f g h i j 
 
CSR Format: 

Row Pointer 0 3 4 5 5 7 7 7 9 10 
 

Column Index 0 6 8 3 1 3 7 4 8 5 
Value a g i c b d h e j f 

 
CSC Format: 

Column Pointer 0 1 2 2 4 5 6 7 8 10 
 

Row Index 0 2 1 4 7 8 0 4 0 7 
Value a b c d e f g h i j 

Figure 20. Sparse Matrix COO, CSR, and CSC Examples (Bazi, Saboundjian, Bou Assi, & Diab, 
2020) 

This matrix in Figure 20 has a density of 12 percent and a sparsity of 88 percent, where the 
density and sparsity are calculated in accordance with the following formulas. 

 
Density (%) = nnz

nr×nc
×100  (74) 
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Sparsity (%) = 100 – Density (%) (75) 
 
A typical pavement model with 24,000 nodes or 48,000 degrees of freedom has matrices with 
0.03 percent density or 99.97 percent sparsity, indicating that most elements are zeros. 
 
Finally, the COO format is used in the PULSE_FE module for generating the sparsity pattern, 
and CSC format is used for storing and processing all matrices over the related CSR format to 
ensure compatibility with the CSparse.Net library. 
 
3.3  STATIC AND DYNAMIC ANALYSES COMPARISON WITH ABAQUS 

The PULSE_FE module is validated by comparing the surface deflections to the ABAQUS 
software under static and dynamic loading. A three-layer flexible pavement structure consisting 
of a 3-inch AC layer, a 12-inch aggregate base layer, and a subgrade layer is considered. The 
pavement structure is meshed using Gmsh with only 986 nodes and 1,827 linear triangular 
elements. A coarse mesh is used to limit the number of nodes to 1,000.  
 
The model is loaded using a 9,000-lb simulated FWD load applied uniformly over a circular area 
with a 6-inch radius. For the dynamic analysis, the FWD load is modeled using a 40-ms 
haversine pulse. All layers are modeled as linear elastic isotropic materials for the static analysis 
as illustrated in Table 2, and the AC layer is modeled as linear viscoelastic (LVE) for the 
dynamic analysis.  
 
Table 3 shows the Prony coefficients for the AC layer. The modulus of elasticity and Poisson’s 
ratio are used to generate the stiffness matrix for the static and dynamic analysis, respectively. 
The density and Rayleigh damping coefficients are used to generate the mass and damping 
matrices for the dynamic analysis, respectively. 
 
It is important to note that ABAQUS is limited to a maximum of 13 Prony coefficients, which is 
not the case for PULSE_FE. This limitlessness is important for modeling, and specifically for the 
dynamic backcalculation of the master curve, which will be illustrated in future studies. 

Table 2. Layer Thicknesses and Properties 

Layer Type 
Thickness 

(in.) 
Modulus 

(ksi) 
Poisson’s 

Ratio 
Density 

(pcf) 

Rayleigh 
Damping 

Coefficients 
αR βR 

AC 
Linear 
Elastic 3 500 0.35 150 10 0.001 

LVE 3 2,760 0.35 150 0 0 
Aggregate 
Base 

Linear 
Elastic 12 50 0.40 120 20 0.002 

Subgrade Linear 
Elastic — 5 0.45 100 30 0.003 
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Table 3. Prony Coefficients 

Term j log(𝝉𝝉𝒋𝒋) 
Relative Modulus 

𝜶𝜶𝒋𝒋 
1 -7 0.252 
2 -6 0.108 
3 -5 0.227 
4 -4 0.18 
5 -3 0.1355 
6 -2 0.058 
7 -1 0.0242 
8 0 0.0074 
9 1 0.00337 
10 2 0.0011 
11 3 0.0007 
12 4 0.0001 
13 5 0.00045 

 
3.3.1  Static Analysis 

Figure 21 shows the surface deflection basins calculated using the PULSE_FE module and 
ABAQUS. The deflections are considered to be identical for practical purposes as demonstrated 
with a maximum difference of 1.68×10-6 mils or 5.34×10-8 percent between the results. 
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Figure 21. PULSE_FE and ABAQUS FWD Surface Deflections (Bazi, Saboundjian, Bou Assi, 
& Diab, 2020)  

3.3.2  Dynamic Analysis 

Figure 22 shows the PULSE_FE deflection time histories at various offsets ranging from 0 to 72 
inches, along with the simulated FWD dynamic load. The HHT-α numerical integration 
procedure is followed with 𝛼𝛼 = −0.05 resulting in 𝛽𝛽 = 0.275625 and 𝛾𝛾 = 0.55.  
 

 

Figure 22. PULSE_FE Deflection Time Histories at Various Radial Offsets  
((Bazi, Saboundjian, Bou Assi, & Diab, 2020) 

Figures 23 and 24 compare the vertical (axial) and radial deflections, respectively, for selected 
offsets using PULSE_FE and ABAQUS. The deflections are identical with maximum difference 

Deflections D0 through D72  

Load 
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of 4.49×10-7 mils or 2.34×10-6 percent. It should be noted that the radial deflections are not 
considered in the dynamic backcalculation, and they are simply compared for validation 
purposes.  
 

Figure 23. PULSE_FE and ABAQUS Vertical Surface Deflections at 0-, 24-, 48-, and 72-inch 
Offsets using HHT-α Method (Bazi, Saboundjian, Bou Assi, & Diab, 2020) 

 

Figure 24. PULSE_FE and ABAQUS Radial Surface Deflections at 24- and 72-inch Offsets 
using HHT-α Method ((Bazi, Saboundjian, Bou Assi, & Diab, 2020) 

3.3.3  PULSE_FE Computational Efficiency 

PULSE_FE is currently programmed to use one computer processor. Using a laptop with an Intel 
core i7 processor and Microsoft® Windows® 10 Pro operating system (a standard laptop), 
PULSE_FE is able to solve the system for a linear elastic dense model with 24,000 nodes in 5 
seconds using 100 time steps (e.g., every 1 ms for a 100 ms duration) and in 6 seconds using 200 
time steps. On the other hand, ABAQUS completed the same tasks with one processor in about 5 
and 10 minutes for the 100 and 200 steps, respectively. Increasing the number of parallel 
processors in ABAQUS from one to three reduces the analysis time in half.  
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When LVE material is considered in the modeling, the PULSE_FE computation time is slightly 
increased from 5 seconds to under 10 seconds using 100 time steps. The increase in time is 
linearly proportional to the number of LVE elements and the number of time steps. 
 
In summary, PULSE_FE is shown to be computationally efficient by completing the task in 1 to 
3 percent less time than ABAQUS takes, making the dynamic backcalculation feasible. 
 
4.  DYNAMIC BACKCALCULATION UPDATE 

An application, PULSE 2019, was developed for the dynamic backcalculation that uses FE 
modeling for forward calculation and the Newton-Raphson method for improving the variables 
(Bazi & Bou Assi, 2022). The application reliably predicted the AC master curve for several 
simulated pavement structures and mixes at different temperatures. The application was 
upgraded to PULSE 2020, as part of the FAA project, to improve the master curve prediction. 
This improvement was achieved by better estimating the Jacobian matrix and by using additional 
FWD parameters that are critical for the backcalculation process. 
 
4.1  MASTER CURVE PREDICTION HISTORICAL BACKGROUND 

Over the past several years, researchers from Michigan State University (MSU) and Iowa State 
University (ISU) attempted to develop the AC master curve from FWD data using dynamic 
backcalculation. The initial results showed the need for more research and validation before a 
software tool could be made available. 
 
Kutay, Chatti, and Lei (2011) from MSU pioneered the effort to predict the damaged master 
curve of the AC layer from FWD data. In their method, they used a layered, viscoelastic-forward 
algorithm in an iterative backcalculation procedure. The master curve was reliably predicted 
using simulated FWD data for frequencies above 10-3 Hz. Researchers recommend 
improvements in FWD technology and test procedures.  
 
Varma, Kutay, and Chatti (2013) from MSU indicated that the master curve development 
requires more data than the surface deflection time-histories of a single FWD drop. They suggest 
performing the FWD testing at different temperatures in the range of 68 °F to 122 °F to 
maximize the portion of the master curve that can be reliably backcalculated. 
 
Gopalakrishnan et al. (2014, 2015) from ISU investigated the feasibility of employing neural 
networks (NNs) to backcalculate the master curve using the same layered viscoelastic forward 
analysis tool developed by MSU. Researchers indicated that the current prediction accuracies are 
not sufficient to recommend these models for practical implementation. 
 
Zaabar, Chatti, Lee, and Lajnef (2014) from MSU used a time-domain viscoelastic dynamic 
solution as a forward routine and a genetic algorithm for backcalculation analysis. Field FWD 
load and deflection time histories from three sites were used for validation. The new algorithm 
was capable of reliably backcalculating the master curve of the AC layer. 
 
Varma and Kutay (2016) from MSU used a layered viscoelastic-nonlinear forward model to 
develop a genetic algorithm-based backcalculation scheme. The study showed that running FWD 
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at two different temperatures can be sufficient to compute the master curve of asphalt pavements 
and the nonlinear properties of unbound layers. The algorithm is validated using two FWD test 
runs at a long-term pavement performance (LTPP) test section. 
 
Lee, Ayyala, and Von Quintus (2017) conducted dynamic backcalculation on two LTPP 
sections. The backcalculated master curves were significantly different from those constructed 
using laboratory testing data. 
 
Hamim et al. (2020) recently used artificial neural network (ANN) models designed using the 
FWD deflection-time history data obtained by the FE method to predict the master curve. The 
study evaluated two ANN models with one model demonstrated to be more accurate than the 
other. 
 
4.2  PULSE 2020 UPGRADE 

Several features were added to the PULSE 2020 application, as discussed in this report, to better 
estimate the Jacobian matrix for the Newton-Raphson method and to evaluate additional 
deflection parameters for improving the AC master curve prediction. The application was also 
upgraded to the same .NET framework using the C# programming language. The ABAQUS FE 
solver was used in this study for the forward calculation of the pavement surface deflections 
through a dynamic implicit analysis. The PULSE_FE module was used for the forward 
calculation.  
 
The AC layer for flexible pavements was modeled as an LVE material, and all other layers, 
including the Portland cement concrete layer for rigid pavements, were modeled as linear elastic 
with damping. Figure 25 shows a detailed flowchart of the PULSE application.  
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Figure 25. PULSE 2020 Application Flowchart (Bazi, Saboundjian, Bou Assi, & Diab, 2020) 

4.2.1  Asphalt Concrete LVE Behavior 

The LVE behavior of AC is considered using the master curve’s reduced sigmoidal function 
(Equation 76). This model is slightly different than the typical model, where a coefficient 𝛽𝛽′ is 
used instead of 𝛽𝛽. The sigmoidal function’s exponent 𝛽𝛽 +  𝛾𝛾 × log(𝑓𝑓𝑟𝑟) in the standard model is 
rewritten in the form of  𝛽𝛽′ +  𝛾𝛾 × log(𝑓𝑓), where 𝛽𝛽′ = 𝛽𝛽 +  𝛾𝛾 × log[a(T)]. This substitution 
allows the determination of the four sigmoidal coefficients at any temperature T, without 
including a time-temperature superposition model (Bazi & Bou Assi, 2022). The master curve at 
the reference temperature is then determined using backcalculated variables from a minimum of 
two temperatures. 
 

𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 =  𝛿𝛿 +  𝛼𝛼
1+𝑒𝑒𝛽𝛽′ + 𝛾𝛾×log(𝑓𝑓) (76) 
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where:  
 
 E = time–temperature-dependent relaxation modulus 

δ, α, 𝛽𝛽′, and γ = fit constants 
10δ = minimum modulus 
10δ + α = maximum modulus 
γ = steepness of the function 
𝛽𝛽′ = 𝛽𝛽 +  𝛾𝛾 × log[a(T)] 
f = frequency 
T = Temperature  
log[a(T)] = shift factor 
 

The four master curve coefficients (variables) are used to calculate the Prony series coefficients 
for use in the FE model (Zaabar, Chatti, Lee, & Lajnef, 2014; Bazi & Bou Assi, 2022).  
 
4.2.2  Newton’s Method for Approximating Roots 

Newton’s method, also known as the Newton-Raphson method, is a root-finding algorithm that 
produces iteratively better approximations to the roots of a function following Equation 77. 
 

𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛) (77) 

 
The process starts with an initial guess, and a better approximation of the root is obtained after 
every iteration. Figure 26 provides an illustration of how the root of a function f(x) = -0.5 -2 
× ln(2-x) is better approximated starting at x0 = 1.9500 and reaching the root x5 = 1.2212 in five 
iterations, where the root is accurate to four decimal figures. The ordinates and slopes are 
provided in Figure 26 for verification using Equation 77. Newton’s method is efficient in 
reaching a solution in a few iterations, which is also the proven case for dynamic 
backcalculation.  
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Figure 26. Example of Newton’s Method for Obtaining the Root of f(x) = -0.5 -2×ln(2-x) 

Starting with x0 = 1.9500 (Bazi, Saboundjian, Bou Assi, & Diab, 2020) 

The multivariate Newton’s method is used in the dynamic backcalculation by formulating the 
problem using Equation 78 (Harichandran et al., 1993; Chatti, Ji, & Harichandran, 2004; Bazi & 
Bou Assi, 2022). 
 

⎣
⎢
⎢
⎡
𝜕𝜕𝑃𝑃1
𝜕𝜕𝑉𝑉1

⋯ 𝜕𝜕𝑃𝑃1
𝜕𝜕𝑉𝑉𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕𝑃𝑃𝑛𝑛
𝜕𝜕𝑉𝑉1

⋯ 𝜕𝜕𝑃𝑃𝑛𝑛
𝜕𝜕𝑉𝑉𝑚𝑚⎦

⎥
⎥
⎤
𝑖𝑖

�
𝜕𝜕𝑉𝑉1
⋮

𝜕𝜕𝑉𝑉𝑚𝑚
�

𝑖𝑖

= �
𝑃𝑃1
⋮
𝑃𝑃𝑛𝑛
� − �

𝑃𝑃1�
⋮
𝑃𝑃𝑛𝑛�
�

𝑖𝑖

= �
𝑃𝑃1 − 𝑃𝑃1�

𝑖𝑖

⋮
𝑃𝑃𝑛𝑛 − 𝑃𝑃𝑛𝑛�

𝑖𝑖
� (78) 

 
where:  
 

𝑃𝑃1:𝑛𝑛�  = Calculated parameters 

𝑃𝑃1:𝑛𝑛 = Measured parameters 

𝑉𝑉1:𝑚𝑚= Variables 
𝜕𝜕𝑃𝑃1:𝑛𝑛
𝜕𝜕𝑉𝑉1:𝑚𝑚

 = First-order derivative (slope) 

 𝑖𝑖 = Iteration number 
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The offset array, �
𝜕𝜕𝑉𝑉1
⋮

𝜕𝜕𝑉𝑉𝑚𝑚
�

𝑖𝑖

 , is determined for every iteration by multiplying the inverse of the 

Jacobian matrix (matrix with first-order derivatives) by the error array, �
𝑃𝑃1 − 𝑃𝑃1�

𝑖𝑖

⋮
𝑃𝑃𝑛𝑛 − 𝑃𝑃𝑛𝑛�

𝑖𝑖
�, and adding it to 

the previously determined variables. The Jacobian matrix is inverted using the singular-value 
decomposition (SVD) process. 
 
4.2.2.1  Newton’s Method Step Size 

The Jacobian matrix is populated numerically using the finite-difference derivative 
approximation since the analytical expressions of the partial derivatives are not available. A step 
size, h, is used to vary one variable at a time and see the effect of such variation on the response 
parameters. In the former PULSE 2019 application, the master curve variables δ, α, βʹ, and γ 
were simply multiplied by 1+h using the forward finite-difference, which results in a variation 
that is different than h for the AC moduli. This is depicted by the dotted lines in Figure 27, where 
a step size of 0.1, or 10 percent, results in a variation in the AC moduli in the range of –19.9 
percent and 137.4 percent at the FWD’s most dominant frequency of 17 Hz [log(17) = 1.23].   
 
To address this limitation and to improve the slope calculation, four equations (79 through 82) 
were developed to calculate the master curve variables (𝛿𝛿ℎ, 𝛼𝛼ℎ, 𝛽𝛽′ℎ, and 𝛾𝛾ℎ) that would cause a 
step size (=h) variation in the AC moduli at a preselected frequency. This is illustrated by the 
solid lines in Figure 27, where the variation is exactly equal to 10 percent at 17 Hz. All equations 
shown below are frequency dependent, except for the 𝛿𝛿ℎ equation. 
 

 
𝛿𝛿ℎ = 𝛿𝛿 + 𝑙𝑙𝑙𝑙𝑙𝑙(1 + ℎ)    (79) 
 
𝛼𝛼ℎ = � 𝛼𝛼

1+𝑒𝑒𝛽𝛽′+𝛾𝛾.log𝑓𝑓 + 𝑙𝑙𝑙𝑙𝑙𝑙(1 + ℎ)� × �1 + 𝑒𝑒𝛽𝛽′+𝛾𝛾.log𝑓𝑓�  (80) 
 

𝛽𝛽′ℎ = 𝑙𝑙𝑙𝑙 � 𝛼𝛼
𝛼𝛼

1+𝑒𝑒𝛽𝛽′+𝛾𝛾.log𝑓𝑓
+𝑙𝑙𝑙𝑙𝑙𝑙(1+ℎ)

− 1� − 𝛾𝛾. log𝑓𝑓  (81) 

 

𝛾𝛾ℎ =
𝑙𝑙𝑙𝑙� 𝛼𝛼

𝛼𝛼
1+𝑒𝑒𝛽𝛽′+𝛾𝛾.log𝑓𝑓

+𝑙𝑙𝑙𝑙𝑙𝑙(1+ℎ)
−1�−𝛽𝛽′

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 (82) 
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Figure 27. Variations in AC Moduli Due to Variations in Sigmoidal Function Coefficients using 

a Step Size h = 0.1 (10 percent) 

4.2.3  Backcalculation Parameters 

The FWD deflection time histories contain information that is unique to each pavement structure. 
The static backcalculation methods only use peak deflections, whereas the traditional dynamic 
backcalculation methods use peak deflections and the time delay or lag between the pulses. The 
parameters that use peak deflections and time delays may be adequate for the dynamic 
backcalculation of the pavement variables, but they are not sufficient to reliably obtain the AC 
master curve. Bazi and Bou Assi (2022) used additional parameters in the PULSE 2019 
application to capture the shape and magnitude of the deflection time history for every FWD 
sensor, and they were successful in obtaining the master curve for most of the evaluated mixes. 
In the PULSE 2020 application, Bazi and Bou Assi (2022) explored additional parameters that 
are critical for the backcalculation process.  
 
The PULSE 2019 parameters, shown in orange in Figure 28, include the peak deflection (DPeak) 
that occurs at time TDPeak; the times to the left and right of the peak that correspond to 50 percent 
of the peak deflection T50L and T50R, respectively; and the duration of the pulse at 50 percent of 
the peak deflection calculated as the difference between T50R and T50L (Dur50).   
 
In addition to the 5 parameters that are listed above, 17 additional parameters are explored for 
use in the PULSE 2020 application—for a total of 22 parameters—and they are shown in bold in 
Figures 28 and 29. Figure 28 shows the time history of the surface deflection, whereas Figure 29 
shows the time history of the surface velocity.  
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Figure 28. Typical FWD Surface Deflections Time Histories 

 

 

Figure 29. Typical FWD Surface Velocities Time Histories 

All 22 parameters are extracted automatically for every sensor using a module named “PULSE 
Analyzer.” The module uses a high-degree polynomial fitting along with its derivatives to 
accurately quantify all the parameters. The fitting is important to accurately obtain the FWD 
parameters since the FWD measured and calculated data are discrete and not continuous. The 
importance of fitting is illustrated in Figure 28 for T75R, where the time does not coincide with a 
discrete data point (discrete points shown in blue). In this case, T75R is the time to the right of the 
peak that corresponds to 75 percent of the peak deflection. 
 

TDPeak, DPeak 

T75R, 0.75×DPeak 

T50R, 0.50×DPeak 

T25R, 0.25×DPeak 

T75L, 0.75×DPeak 

T50L, 0.50×DPeak 

T25L, 0.25×DPeak 

TDminL, DminL TDminR, DminR 

Tend, Dend 

Dur75 

Dur50 

Dur25 

TVPeak, VPeak 

TVminR, VminR 

TVminL, VminL 

Slope = 0 at peak 
deflection 

Largest positive slope for 
increasing deflection 

Largest negative slope for 
decreasing deflection 

Abscissa, Ordinate 
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The plot of the surface velocity is determined using the central-difference finite approximation. 
The parameters are determined through data fitting of the deflection time histories.  
 
Certain parameters, such as TDminL, DminL, TDminR, DminR, TVminL and VminL, are not available for 
all sensors and pavement structures; but when present, they need to be evaluated because they 
provide information about the pavement structures to be included in the dynamic backcalculation 
process. For example, the minimum negative deflection to the right of the peak, represented by 
TDminR and DminR, indicates the presence of a shallow stiff layer that produces the surface 
bouncing. Significant errors would then be expected if the stiff layer is not considered in the 
backcalculation model. 
 
4.3  MASTER CURVE PREDICTION 

The capabilities of the PULSE 2020 application are demonstrated for the same combinations of 
simulated flexible pavement structures and AC mixes used by Bazi and Bou Assi (2022). Those 
combinations consist of three flexible pavement structures with varying AC layer thicknesses 
ranging from 3 inches to 7 inches for mix A and one flexible structure with a 7-inch-thick AC 
layer for mix B at temperatures ranging from 30 °F to 100 °F.  
 
Each combination had eight variables: four for the AC layer and two each for the aggregate base 
and subgrade layers. The target and seed (starting) values for the eight variables along with their 
absolute differences are shown in Table 4.  
 
The backcalculation test results using PULSE 2019 are shown in Table 5 without any highlights 
for the 32 combinations. The frequency range (on a log scale), for which the AC moduli are 
determined to accuracies less than 1 percent, is shown for every combination. The maximum 
error in the AC moduli at 17 Hz and the unbound layers variables is shown between brackets. 
The AC master curve for frequencies larger than 10-1 or 10-2 Hz (log frequency = –1 or –2) are 
determined to less than 1 percent error for 17 out of the 32 combinations (53 percent). 
 
The pavement variables are improved using the PULSE 2020 application (cells with green 
highlights) for the combinations where the maximum moduli are not obtained to accuracies less 
than 1 percent, thus, resulting in improved prediction of the AC master curves. The number of 
combinations, where the AC maximum moduli are predicted to accuracies less than 1 percent, 
has significantly increased from 17 to 28 combinations (an increase from 53 to 88 percent). This 
improvement can be attributed to (1) the use of four additional parameters (TVPeak, VPeak, TVminR, 
and VminR) for a total of nine parameters, and (2) the improvement in the Jacobian matrix 
calculation by using 𝛿𝛿ℎ, 𝛼𝛼ℎ, 𝛽𝛽′ℎ, and 𝛾𝛾ℎ, and the reduction in the step size from 0.1 to 0.01. 
VPeak refers to the peak velocity or deflection slope that occurs at time TVPeak. VminR refers to the 
minimum velocity to the right of the peak deflection that occurs at time TVminR. For the 
combinations where the master curve is better predicted, the errors in the AC modulus at 17 Hz 
and sublayer variables are also improved.  
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Table 4. Target and Seed Values of Variables1, 2 

Layer 
Absolute 

Difference Variable Target Value Seed Value 

AC  
(h1 = 3, 5, & 7 inch) 

Maximum E = 
10δ+α 

 
Mix A: 24% 
Mix B: 21% 

 
E at 17 Hz & 68 °F 

 
Mix A: 18% 
Mix B:  6% 

Sigmoidal coefficient δ Mix A: –0.966 
Mix B: –0.134 

Mix A: –1 
Mix B: –0.3 

Sigmoidal coefficient α Mix A: 4.523 
Mix B: 3.703 

Mix A: 4.65 
Mix B: 3.95 

Sigmoidal coefficient β’ 
𝛽𝛽′ = 𝛽𝛽 +  𝛾𝛾 × log[a(T)] 

Mix A: –1.188–0.494×log[a(T)] 
Mix B: –1.417–0.548×log[a(T)] 

Exact β′ + 0.2 

Sigmoidal coefficient γ Mix A: –0.494 
Mix B: –0.548 –0.65 

Aggregate Base  
(h2 = 12 inch) 

25% Modulus E2 40 ksi 50 ksi 

50% Rayleigh damping 
coefficient βR 0.002 sec. 0.003 sec. 

Subgrade 
40% Modulus E3 5 ksi 7 ksi 

50% Rayleigh damping 
coefficient βR 0.002 sec. 0.001 sec. 

1Ei = modulus of elasticity of ith layer; hi = layer thickness of ith layer; i = 1, 2, and 3 correspond to surface, base, and subgrade layers, respectively. 
2Ea is the activation energy used in the shift factor in accordance with the Arrhenius law (Ea =181,000 for mix A & 170,500 for mix B).  
Reference temperature = 68 °F (293.15 K). 
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Table 5. Dynamic Backcalculation Frequency Range (log) and Maximum Error1, 2 

Temp. (°F) 

Mix A Mix B 
AC Thickness 

3 in. 
AC Thickness 

5 in. 
AC Thickness 

7 in. 
AC Thickness 

7 in. 

30 –1.6 to Max. [0.04%] –2.1 to Max. [0.1%] –2.0 to Max. [0.4%] 
1.3 to 1.8 [1.0%] 

–5.1 to Max. [0.01%] 

40 –3.9 to Max. [0.01%] 
1.1 to 1.4 [1.4%] 1.0 to 2.6 [1.2%] 

0.3 to Max. [2.7%] 
–1.4 to Max. [0.005%] –0.7 to Max. [1.0%] 

50 –3.1 to Max. [0.02%] –3.4 to Max. [0.06%] –3 to Max. [0.1%] –2.4 to Max. [0.3%] 

60 –2.3 to Max. [0.008%] –2.1 to Max. [0.03%] –2.2 to Max. [0.07%] –3.6 to Max. [1.2%] 

70 –1.9 to Max. [0.003%] –1.5 to Max. [0.02%] 
–2.2 to 5.7 [0.2%] 

–0.9 to Max. [0.14%] 
–1.9 to Max. [0.01%] 

80 –1.8 to Max. [0.001%] 
–1.5 to 7.0 [0.007%] 0.6 to 2.1 [1.5%] –0.7 to 6.7 [0.04%] 

–1.4 to 6.8 [0.009%] –1.8 to Max. [0.005%] –1.3 to Max. [0.03%] 

90 
–2.1 to 6.5 [0.005%] –2.1 to 4.3 [0.03%] 0.5 to 2.5 [0.5%] –0.6 to 4.9 [0.03%] 

–2.3 to 6.3 [0.02%] –2.2 to 5.9 [0.03%] –3.1 to Max. [0.01%] –2.5 to Max. [0.005%] 

100 
–1.3 to 5.9 [0.02%] –1.2 to 5.1 [0.01%] –1.1 to 4.7 [0.01%] 0.4 to 2.2 [1.4%] 

–1.4 to 5.6 [0.01%] –3.0 to Max. [0.002%] –4.1 to Max. [0.001%] –2.3 to Max. [0.003%] 

1 Cells highlighted in green were run using PULSE 2020.  
2 Max. = Maximum modulus. 
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4.4  PARAMETRIC STUDY 

A parametric study was performed using FE axisymmetric modeling of FWD load to evaluate 
the influence of layer thicknesses, material properties, and presence of stiff layers on the FWD 
parameters. The parametric study consists of 15,552 combinations. The AC was modeled as LVE 
material by considering the master curve sigmoidal function variables δ, α, β, and γ (Table 6).  

Table 6. Parametric Study Combinations 

Pavement Type Flexible1 

Surface Layer 

Thickness 2 levels: h1 = 3 & 6 inch 

Property [Linear 
Viscoelastic]2 

3 levels: δ = –1.3, –1, & –0.82 
3 levels: α = 4.15, 4.5, & 4.7 
3 levels: β = –1.57, –1.2, & –0.73 
3 levels: γ = –0.8, –0.5, & –0.12 

Aggregate 
Base Layer 

Thickness 2 levels: h2 = 6 & 12 inch 

Property [Linear Elastic] 
2 levels: E2 = 30 & 60 ksi 
1 level: βR = 0.002 

Subgrade Layer [Linear Elastic] 2 levels: E3 = 5 & 15 ksi 

Stiff Layer Thickness3 and Property 3 levels: None, 10 feet with E4 = 100 ksi & 20 feet with E4 = 
100 ksi 

Rayleigh Damping Parameters  
(Subgrade & Stiff Layers) 

2 levels: αR = 0 & 50 
2 levels: βR = 0.002 & 0.006 

FWD Load Level 1 level: 40 msec. haversine pulse with radius of loaded area = 
6 inch, and Load level = 9 kips 

1Ei = modulus of elasticity of ith layer; hi = layer thickness of ith layer; i = 1, 2, 3, and 4 correspond to the surface, 
base, subgrade, and stiff layers, respectively.  
2Variables were determined to cause a 50 percent variation in the modulus of the FWD’s most dominant frequency 
of 17 Hz. 
3Stiff layer thickness determined from surface. 
 
The 22 FWD parameters were determined for each sensor of the 15,552 combinations, and a 
regression analysis was performed to understand the effect (positive or negative) and to quantify 
the contribution of the various predictor variables (pavement variables) on the response variables 
(FWD parameters). The best subset of four predictor variables was selected for each response 
variable, producing total contributions in the range of 40 to 95 percent for each response 
variable. An average contribution of 81 percent is calculated (Table 7). A similar analysis was 
conducted in previous research (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020), where only three FWD 
parameters were considered, and two levels of LVE AC behavior were modeled.  
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Table 7. Effects and Percent Contributions of Model Parameters on Response Variables 

Response 
Variable at 

Offset 
(inch)  

Predictor Variables (%) 
Sum 
(%) h1 δ α β γ h2 E2 E3 hSL αR βR 

D
Pe

ak
 0 –23.24     –7.49 –5.99 –33.43    70.2 

24 –1.9     –3.64  –82.57   –2.52 90.6 
48        –86.46 +0.55 –4.23 –3.99 95.2 
72        –71.31 +3.15 –8.04 –6.88 89.4 

T D
Pe

ak
 0 +11.08    –13.09   –53.54   +8.09 85.8 

24        –68.35 +1.48 –1.33 +21.13 92.3 
48 –2.99       –70.65 +4.13  +6.11 83.9 
72 –2.08     –2.47  –74.91 +6.46   85.9 

D
m

in
L 0 –23.24     –7.49 –5.99 –33.43    70.2 

24 –1.90     –3.64  –82.57   –2.52 90.6 
48        –86.18 +0.54 –4.11 –4.12 94.9 
72        –72.03 +2.60 –6.60 –7.69 88.9 

T D
m

in
L 0            –– 

24            –– 
48 –15.57     –18.81 –9.68 –17.46    61.5 
72 –6.09     –9.11  –53.99   –5.90 75.1 

D
m

in
R

 0 –21.84     –6.81 –5.37 –35.83    69.8 
24      –2.99  –76.93  –3.28 –4.08 87.3 
48        –74.25 –1.73 –8.05 –6.29 90.3 
72        –62.79 –0.83 –13.09 –9.65 86.3 

T D
m

in
R
 0        –41.66 +2.71 +0.28 +8.92 53.6 

24        –51.65 +5.75 +0.10 +8.39 65.9 
48        –50.79 +8.61 +0.01 +7.75 67.1 
72        –47.85 +8.81 +0.01 +5.88 62.5 

D
ur

25
 0 +12.27    –11.13   –35.98   +15.50 74.9 

24 +3.0       –44.11 +11.63  +19.53 78.3 
48 +1.47       –29.67 +28.80  +17.73 77.6 
72        –4.28 +28.74 –0.80 +6.34 40.1 

D
ur

50
 0 +13.08    –11.06   –39.53   +14.77 78.4 

24 +3.24       –48.45 +7.3  +20.47 79.5 
48 +1.76       –34.54 +20.75  +18.93 76.0 
72      +1.16  –14.95 +40.21  +18.92 75.2 

D
ur

75
 0 +13.01    –10.94   –42.26   +15.76 82.0 

24 +3.08       –49.90 +6.19  +21.68 80.8 
48 +1.92       –35.74 +17.50  +19.54 74.7 
72      +1.37  –14.66 +36.33  +20.61 73.0 

D
En

d 

0 –23.94     –7.22 –5.75 –32.12    69.0 
24 –1.89     –3.57  –79.94   –1.66 87.1 
48        –76.31 +0.58 –3.53 –2.16 82.6 
72        –54.58 +1.76 –6.43 –3.60 66.3 

T 2
5L

 0 +7.98  +3.68  –14.74   –57.72    84.1 
24 –4.26    +1.78   –66.16   +13.98 86.2 
48 –10.18     –8.07 –3.79 –55.60    77.6 
72 –5.00     –6.92 –2.12 –68.57    82.6 
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Table 7. Effects and Percent Contributions of Model Parameters on Response Variables 
(Continued) 

 
Response 

Variable at 
Offset 
(inch) 

Predictor Variables (%) 
Sum 
(%) h1 δ α β γ h2 E2 E3 hSL αR βR 

T 2
5R

 0 +11.98    –12.13   –40.63   +13.40 78.1 
24 +1.23       –52.82 +9.40  +20.45 83.9 
48    +0.03    –48.87 +23.10  +13.65 85.6 
72        –26.73 +24.80 –0.36 +3.39 55.3 

T 5
0L

 0 +9.37    –14.09   –56.44   +4.69 84.6 
24 –1.97       –68.77  –1.64 +17.04 89.4 
48 –7.70     –5.88 –2.76 –63.26    79.6 
72 –4.18     –5.42 –1.73 –73.19    84.5 

T 5
0R

 0 +12.19    –12.55   –46.85   +11.06 82.6 
24        –61.06 +4.63 –0.77 +21.43 87.9 
48      –0.21  –61.23 +13.11  +12.14 86.7 
72      –0.44  –56.55 +23.09  +7.09 87.2 

T 7
5L

 0 +10.17    –13.65   –55.41   +5.97 85.2 
24 –0.88       –69.42  –1.61 +18.89 90.8 
48 –5.76     –4.34  –67.68   +2.78 80.6 
72 –3.42     –4.25  –75.55 +2.57   85.8 

T 7
5R

 0 +11.73    –12.75   –50.68   +10.07 85.2 
24        –65.00 +2.91 –0.98 +21.91 90.8 
48 –0.90       –67.51 +8.25  +9.92 86.6 
72      –1.03  –66.35 +14.81  +4.74 86.9 

V
m

in
L 0 –26.28     –7.43 –6.34 –26.44    66.5 

24 –2.70     –4.31  –77.13   –4.89 89.0 
48      –0.91  –79.93  –3.57 –8.12 92.5 
72      –1.47  –66.63  –4.40 –13.25 85.7 

T V
m

in
L 0             

24             
48 –16.54     –16.72 –11.47 –13.85    58.6 
72 –6.75     –7.91  –51.94   –6.78 73.4 

V
m

in
R

 0 –28.12    +6.65 –7.47  –21.19    63.4 
24 –3.71     –5.05  –68.03   –8.45 85.2 
48      –0.68  –71.43  –5.33 –13.44 90.9 
72 –0.51       –58.32  –9.37 –19.49 87.7 

T V
m

in
R
 0 +10.71    –11.84   –55.73   +6.12 84.4 

24    +0.50    –70.00  –3.44 +17.64 91.6 
48 –1.65       –76.42  –2.78 +5.04 85.9 
72      –1.57  –79.15 +1.63  +2.28 84.6 

V
Pe

ak
 0 –26.28     –7.43 –6.34 –26.44    66.5 

24 –2.70     –4.31  –77.13   –4.89 89.0 
48      –0.51  –81.69  –3.93 –7.77 93.9 
72        –68.28 +1.17 –6.19 –12.54 88.2 

T V
Pe

ak
 0 +9.90    –13.87   –56.12   +4.63 84.5 

24 –1.76       –68.61  –1.82 +17.69 89.9 
48 –7.03     –4.95 –2.39 –65.71    80.1 
72 –3.80     –4.27 –1.55 –75.78    85.4 
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The predictor variables in Table 7 consist of the AC layer thickness h1, the AC master curve 
variables (δ, α, β, and γ), the base layer thickness h2 and modulus E2, the subgrade modulus E3, 
the depth to the stiff layer hSL, and the subgrade’s Rayleigh damping coefficients αR and βR. 
A review of Table 7 shows that the subgrade modulus E3 is the most significant predictor 
variable for all FWD parameters (response variables).  
 
The peak deflection under the load (DPeak at 0-inch offset) is the most affected by the thickness of 
the surface layer and the subgrade modulus; an increase h1 and E3 decreases the deflection under 
the load [negative (–) effect]. The outer deflections, on the other hand, are the most affected by 
the subgrade modulus and the Rayleigh damping coefficient βR. 
 
The time of the peak deflection (TDPeak) is the most affected by h1, γ, E3, hSL, and βR. For 
example, an increase in h1 and βR increases the time of the peak deflection under the load (i.e., 
delays the peak), whereas an increase in γ and E3 decreases the time of the peak deflection. An 
increase in γ produces a lower AC modulus. 
 
The minimum deflection (DminL) to the left of the peak is common for the outer sensors when 
testing relatively thin and soft pavement structures, and it is the most affected by h1, h2, and E3. 
The minimum deflection (DminR) to the right of the peak is common for pavement structures with 
shallow stiff layers, and it is the most affected by E3, hSL, and βR. 
 
The deflection pulse durations at 25, 50, and 75 percent of the peak deflection (Dur25, Dur50, and 
Dur75, respectively) are the most affected by h1, E3, hSL, and βR. 
 
The times to the left of the peak corresponding to 25, 50, and 75 percent of the peak deflection 
(T25L, T50L, and T75L, respectively) are the most affected by h1 and E3, whereas the times to the 
right of the peak (T25R, T50R, and T75R) are the most affected by E3 and βR. 
 
The velocities (VminL, VPeak, and VminR) are affected similar to their deflection counterparts 
(DminL, DPeak, and DminR). 
 
Considering all contributions for the various response variables, the subgrade modulus 
predominantly controls the FWD parameters with a 70 percent contribution, as illustrated in 
Figure 30, followed by the Rayleigh damping coefficient βR, the AC thickness, and the depth to 
the stiff layer, when present. 
 
The contribution of the AC master curve variables is minimal relative to the major contributors. 
As a result, the backcalculation of the AC master curve is increasingly challenging. 
 
Finally, the sum of the contributions (last column in Table 7) is used to determine the FWD 
parameters with the largest contributions for use in dynamic backcalculation. The following 12 
FWD parameters are shown to have the most significant effect: 
 

• DminL, DPeak, TPeak, DminR 
• T50L, T50R, T75L, T75R 
• VminL, VPeak, TVPeak, VminR 



 

49 

 

Figure 30. Overall Contribution of the Predictor Variables (Bazi, Saboundjian, Bou Assi, & 
Diab, 2020)   

4.5  DYNAMIC BACKCALCULATION OF FAA SECTION 

The PULSE 2020 application was used for the dynamic backcalculation of a flexible pavement 
structure built at the FAA NAPTF. The NAPTF is a fully enclosed instrumented test track 
900 feet long by 60 feet wide, where flexible and rigid sections are built, instrumented, and 
trafficked to evaluate different pavement technologies and to advance airport pavement design 
and evaluation methods. 
 
The pavement structures of CC-9 were built in December 2019 and consist of 10 flexible 
pavement test items designed to address multiple objectives. Four test items within low-strength 
subgrade flexible pavement with stabilized base (LFS)-1 and LFS-2 are designed to analyze the 
effect of P-403- and P-209-layer thicknesses on the fatigue life. Four test items within LFC-3 and 
LFC-4 are comparable pavement structures designed to analyze the effect of geosynthetic 
materials and cement-treated permeable base material. Two test items within LFC-5 are designed 
to analyze the strain criteria for flexible pavement allowable overload. 
 
The southern LFS-2 section (LFS-2S) was selected for this study (Figure 31), and the structure 
consisted of 4-inch P-401, 5-inch P-403, and 30-inch P-209 over a Dupont clay subgrade (P-
152). P-401 and P-403 refer to the AC layers, P-209 refers to the crushed aggregate base layer, 
and P-152 refers to the subgrade layer as defined in FAA Advisory Circular (FAA AC) 
150/5370-10H. 
 
FWD testing is performed periodically to evaluate the uniformity of the sections before 
trafficking and to quantify the damage during trafficking. Pre-traffic FWD testing was performed 
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on December 30, 2019, and January 16, 2020, and the data from the December testing were used 
for the analysis. 
 

 
LFS-2S (Station 0+60 – 1+05) 

 

 

4-inch P-401 (PG 76-22) 
5-inch P-403 (PG 76-22) 

30-inch P-209 

P-152 

Figure 31. Pavement Structure for CC-9 LFS-2S (left) and FWD at NAPTF (right)  
(Bazi, Saboundjian, Bou Assi, & Diab, 2020)   

A plot of the deflection basins at three load levels, ranging from 13 kips to 37 kips, is shown in 
Figure 32. Overall, the FWD-measured surface deflections were relatively small due to thick and 
stiff pavement structure at the tested temperature; where a mid-depth AC temperature of 50 °F, a 
surface temperature of 52 °F, and an air temperature of 54 °F were recorded at the time of testing 
(11:24 AM). 
 

 

Figure 32. Deflection Basins for CC-9 LFS-2S at Three Load Levels on December 30, 2019 
(Bazi, Saboundjian, Bou Assi, & Diab, 2020) 

Figure 33 shows the surface moduli plot as determined using the Boussinesq equations, where 
the calculation is based on the FWD load and the corresponding surface deflections. The surface 
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moduli at the center of the FWD load plate were calculated using the Boussinesq distributed load 
equation, whereas the surface moduli at any radial distance from the center of the load plate are 
calculated using the Boussinesq point load equation. The surface moduli provide equivalent 
stiffness assuming the pavement is composed of a semi-infinite half-space. 
 
The FWD loads, for the various drops, were proportional to the surface deflections resulting in 
almost identical surface moduli. This observation also indicates that the pavement materials 
mainly behave as stress-independent materials (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020). 

 

 

Figure 33. Surface Moduli for CC-9 LFS-2S at Three Load Levels on December 30, 2019  
(Bazi, Saboundjian, Bou Assi, & Diab, 2020) 

The dynamic backcalculation was performed for the three load levels using the recommended 
parameters from the previous section, except for DminL and VminL because those parameters are 
not present for this thick and stiff structure.  
 
The backcalculated layer variables (moduli) are presented in Table 8, where the AC moduli are 
reported at the tested temperature of 50 °F and at a frequency of 17 Hz, where the 17 Hz is 
considered to be the most dominant FWD frequency (Sebaaly et al., 1985 and 1986; Kim, Xu, & 
Kim, 2000; Chatti & Lei 2012; Bazi & Bou Assi, 2022; Fu et al., 2020). 
 
The Rayleigh damping coefficients, βR, are determined as 0.0034 and 0.0023 for the P-209 and 
P-152 layers, respectively, and are kept constant for the various drop levels to have a one-to-one 
comparison of the layer moduli. 
 

[Average surface 
moduli from 3 drops] 
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Table 8. Backcalculated Layer Moduli 

Layer 

CC-9 LFS-2S Station 0+85 Offset +15S 
Load Level 
= 13 kips 

Load Level 
= 25 kips 

Load Level 
= 37 kips 

AC  
[P-401/P-403]1 1,170 ksi at 17 Hz 1,130 ksi at 17 Hz 1,100 ksi at 17 Hz 

Crushed Aggregate Base 
[P-209] 46.8 ksi 42.8 ksi 41.6 ksi 

Subgrade [P-152] 13.9 ksi 13.1 ksi 12.7 ksi 

RMSRE  DPeak only 3.9% 3.2% 3.1% 
All parameters 2.9% 3.2% 3.6% 

1The P-401/P-403 asphalt surface and asphalt base layers were combined during backcalculation. 
 
The root-mean-square relative errors (RMSREs) between the measured and calculated 
parameters, as reported in Table 8, are acceptable for the three load levels by considering the 
peak deflections (DPeak only) and by considering all FWD parameters used in the 
backcalculation. The calculated and measured time histories at the first load level of 13 kips are 
shown in Figure 34, where the fit is adequate. It is important to note that several parameters are 
being fitted by varying the pavement variables, and this process does not simply consider the 
peak deflections (DPeak) used in static backcalculation or the peak deflections and time lag used 
in traditional dynamic backcalculation. 
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(a) 0-inch 

 

(b) 12-inch 

 

(c) 24-inch 
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(d) 36-inch 

 

(e) 60-inch 

 

(f) 72-inch 

 

Figure 34. Measured vs Calculated FWD Deflections at 13 kips for December 30, 2019  
(Bazi, Saboundjian, Bou Assi, & Diab, 2020) 
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A comparison of the crushed aggregate base (P-209)- and subgrade (P-152)-layer moduli at the 
various load levels in Table 8 shows that the unbound layers are slightly stress-dependent, where 
the moduli decrease for an increase in load level. The moduli stress-softening is about 10 percent 
for a 185 percent increase in load level, and this behavior can only be captured by analyzing the 
FWD data at different load levels.  
 
Fine-grained materials (e.g., P-152) typically exhibit stress-softening behavior, which was 
confirmed from dynamic backcalculation for the subgrade layer. Conversely, coarse-grained 
materials (e.g., P-209) typically exhibit stress-stiffening behavior based on laboratory testing, but 
this observation is contrary to the results obtained from dynamic backcalculation. Overall, 
coarse- and fine-grained materials exhibited a mildly stress-softening behavior based on dynamic 
backcalculation. This observation was also reported in previous research for an LTPP section 
(Bazi, Saboundjian, Bou Assi, & Diab, 2020). 
 
In the same LTPP study, it was shown that the confinement effect resulting from the stiffness of 
the layers above an unbound layer has a major effect on that layer. The confinement effect, 
which is more pronounced than the mild stress-softening effect, was not studied for the FAA 
section since the temperatures during the two FWD testing periods (December 2019 and January 
2020) were identical, resulting in similar AC moduli and confinement. 
 
Triaxial resilient modulus testing was performed by the FAA on the P-152 subgrade material at 
different combinations of confining and cyclic stresses in accordance with American Association 
of State Highway and Transportation Officials (AASHTO) T 307-99 (2021). Figure 35 shows a 
plot of the subgrade resilient moduli vs the cyclic (deviatoric) stresses at three confining stresses 
(S3) of 6 psi, 4 psi, and 2 psi. A stress-softening behavior was observed, which is expected for a 
fine-grained material.  
 
The figure also shows the backcalculated subgrade layer moduli at the three load levels of 
13 kips, 25 kips, and 37 kips. The moduli are plotted against the calculated maximum vertical 
stresses due to the FWD loading on top of the subgrade layer, as obtained from the FE model. 
The mild nonlinearity of the backcalculated subgrade layer moduli is visible, and the moduli 
match, to a certain extent, the triaxial resilient moduli at a confining stress of 2 psi.  
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Figure 35. P-152 Moduli from Triaxial Testing and Dynamic Backcalculation 
(Bazi, Saboundjian, Bou Assi, & Diab,2020) 

Finally, the backcalculation was also performed using state-of-the-practice software based on 
static analysis. Unreliable subgrade moduli were obtained for the various drops using the static 
analysis, where the subgrade moduli were higher by a factor of 2 to 2.5 when compared to the 
dynamic backcalculation results. Such variation is expected for rigid pavements or thick and stiff 
flexible pavements that are common for airport pavement structures (Bazi, Gagnon, Sebaaly, & 
Ullidtz, 2020). It is important to note that the subgrade moduli obtained from static 
backcalculation are almost equal to the surface moduli for the outer sensors, as depicted by 
Figure 33. 
 
5.  OPTIMIZATION TECHNIQUE 

Optimization is the act of obtaining the best result under given circumstances. An optimization 
problem consists of maximizing or minimizing a real function by systematically choosing input 
values from within allowed ranges to compute the value of the function.  
 
Optimization techniques are used in the backcalculation process to estimate the pavement layers 
variables that would minimize the error between the measured and calculated FWD deflection 
time histories, or, more specifically, between time histories parameters. In this application, the 
layers variables are denoted as 𝑉𝑉, and the evaluation parameters are denoted as 𝑃𝑃. For a given 
load 𝐷𝐷, modeling the FWD testing is formulated as a mapping 𝑀𝑀(𝐷𝐷,𝑉𝑉) → 𝑃𝑃. If the measured 
FWD data are denoted as 𝑃𝑃�, the modeling error is computed by RMSRE (Khetan & Karnin, 
2020) as: 

 

𝐿𝐿�𝑃𝑃,𝑃𝑃�� = �1
𝑛𝑛
∑ �𝑃𝑃𝑖𝑖−𝑃𝑃

�𝑖𝑖
𝑃𝑃𝑖𝑖

�
2

𝑛𝑛
1  (83) 
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Thus, the optimization problem of the backcalculation process is formulated as: 
 

argmin
𝑉𝑉

𝐿𝐿�𝑀𝑀(𝐷𝐷,𝑉𝑉),𝑃𝑃�� (84) 

 
5.1  FULLY AUTOMATED AND GENERAL OPTIMIZATION FRAMEWORK 

The research team developed a fully automated and general optimization framework to bridge 
the PULSE application and various optimization methods. The framework has three main 
components: (1) an input generator, (2) a middleware integrated with PULSE, and (3) a cross-
platform plugin interface. This optimization framework enables automated generation of input 
data, easy incorporation of any optimization algorithms in implementations (supporting different 
programming languages), and construction of the entire workflow in a fully automated manner. 
Figure 36 shows an overview of the fully automated and general optimization framework 
developed in this research effort. 
 

 

Figure 36. Overview of the Optimization Framework    

5.1.1  Motivation of the Optimization Framework 

The PULSE application, programmed in C#, can only handle a specific optimization method 
implemented in the C# programming language. This study evaluated the implementation of 
different optimization methods. However, some optimization methods are difficult to implement 
in the C# programming language. For example, the machine-learning-based optimizer, 
Reinforcement Learning, is one of the approaches the researchers plan to develop. Yet its 
implementation relies heavily on deep-learning frameworks, such as TensorFlow (Abadi et al., 
2016) or PyTorch (Paszke et al., 2019), which are programmed only for Python and C++ 
languages. Given these deep-learning frameworks have huge codebases (developed by thousands 
of full-time engineers in several years) and are optimized by numerous hardware-level 
techniques, it is not feasible to import them into C#. Therefore, it is critical to have a framework 
that can accommodate optimizers in different programming languages and become compatible 
with PULSE. 
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In addition, it is important to automate the optimization workflow. As shown in PULSE 2020 
flowchart (Figure 25), several steps in the workflow need significant amounts of manual effort, 
which can be time-consuming. Examples include (1) creating structure and mesh using Gmsh 
(refer to Section 3.1 for more details), and (2) preparing the input files for FE solver. These 
manual tasks can become a bottleneck as different optimization methods are evaluated and many 
experiments need to be performed, which could take a significant amount of time to complete. 
Fully automating the workflow would significantly speed up the development and evaluation 
process of different optimization methods. 
 
5.1.2  Input Generation Framework 

To develop and evaluate the optimization methods, several input files need to be generated and 
prepared for the FE solver (mainly PULSE_FE, or ABAQUS for verification). The backbones of 
the pavement structures (e.g., points, lines, surface) are first calculated and modeled with the aid 
of Microsoft® Excel®. Then the information is manually imported into Gmsh (Geuzaine & 
Remacle, 2009) to mesh the pavement structure. To prepare the final input files, the users need to 
manually analyze the generated meshing and retrieve the following information for the FE 
solver: the starting/ending indexes for each element set, nodes on the far boundary, nodes on the 
axis of symmetry, evaluation nodes, and elements on the far boundary. Such manual efforts 
usually take at least 10 minutes even for experienced users, which is time-consuming and labor 
intensive to complete a large number of experiments.   
 
To relieve the burden on the users and speed up the process of generating and preparing input 
files, an input generation framework that can automate this process and reduce the time to less 
than 10 seconds was developed as part of this study. Figure 37 demonstrates an overview 
comparison of the previous manual input framework and the new fully automated input 
generation framework. The following sections present details on each step.  
 

 

 

Figure 37. Overview Comparison of the Previous Manual Input Framework and the New, Fully 
Automated Input Generation Framework (Bazi, Saboundjian, Bou Assi, & Diab, 2020)   
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5.1.2.1  Pavement Structure Model 

In the previous workflow, Excel was manually invoked to prepare the pavement structure 
backbones (e.g., points, lines, and surface) to be meshed. Automating this step is quite 
challenging given the large number of built-in equations and calculations, and Excel is well 
known to be automation unfriendly. To solve this challenge, Excel was programmed through the 
component object model (COM) provided by Windows. The COM is a platform-independent, 
distributed, object-oriented system for creating interactive binary software components. COM is 
the base of Microsoft’s Object Linking and Embedding (OLE) (compound documents) and 
ActiveX (Internet-enabled components). COM objects can be created with a variety of 
programming languages. Specifically, the input-generation framework binds Excel by its ProgID 
as a COM object. By using COM, the input-generation framework has full control over Excel. In 
this manner, the input-generation framework can fill in the variables to the Excel file, and then 
Excel can perform the calculations to get the final output for developing the mesh. Given the 
calculation part is exactly the same, the results will be consistent with those from the manual 
process. 

 
5.1.2.2  Developing the Mesh 

To eliminate the manual operation on Gmsh, a Python wrapper of the Gmsh Software 
Development Kit (SDK) was developed. Specifically, the input-generation framework reads the 
pavement structure (e.g., points, lines, and surface) from the Excel output in previous step and 
composes a *.geo file as the input to Gmsh. Then, the input-generation framework calls the 
Gmsh application programming interface to synchronize its internal CAD representation with the 
Gmsh model, which creates the relevant Gmsh data structures for deriving the 2D meshing. The 
meshing using the new generation framework was compared to and checked against the manual 
generation meshing, which showed excellent agreement. 

 
5.1.2.3  Analysis 

The input-generation framework performs a series of analyses that resemble the manual efforts 
once the generated nodes and elements are acquired from Gmsh. Given the time-consuming 
nature of these analyses, automating these steps can save much of the manual effort and make 
the whole process much faster. Figure 38 shows the necessary analysis steps to compose the final 
input file. A few key steps are highlighted here: (1) locate the start and end elements for each 
surface to compose the element sets (each layer), (2) calculate distance from origin for each node 
to filter out the nodes on the far boundary, (3) find out nodes on the y-axis but not on far 
boundary, and (4) find out nodes and elements on the pavement surface where the simulated 
FWD load is applied. 
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Figure 38. Necessary Analysis Steps to Compose the Final Input File 

5.1.2.4  Evaluation  

As a key component of the optimization framework, it is important for the input-generation 
framework to complete the generation workflow in a fast manner. The performance of the input-
generation framework was evaluated on a workstation with Intel Core i7-8700 Processor and 16-
GB memory. A virtual machine with Windows 10 version 2004 was used. The evaluation 
included 30 independent runs of using the input generation framework to compose the 
ABAQUS-style input for a three-layer pavement structure. The clock running time for each run 
is shown in Figure 39. As shown in the figure, all 30 runs finished within 3 seconds, which is a 
significant speedup compared with the manual processing that usually takes about 10 minutes. 
Note that the time shown here also includes the time used in external applications such as Excel 
and Gmsh. 
 

Figure 39. Running Time of Input Generation Framework for 30 Runs to Generate Input for a 
Three-Layer Pavement Structure 

5.1.3  PULSE Application Wrapper 

The PULSE application wrapper was developed to automatically parse the configurations for 
PULSE_FE from ABAQUS-style inputs and to bridge the output from PULSE_FE to 
PULSE_Analyzer. The PULSE_FE is a powerful and better replacement for ABAQUS. It is 
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faster and easier to use. The downside is that it requires users to manually read some parameters 
from input files, like the ABAQUS format, and feed them to PULSE_FE (refer to Section 3 for 
more details). The developed PULSE application wrapper can automate this process to greatly 
improve user experience by offering a one-stop solution. It automatically converts the ABAQUS 
inputs to the final calculated parameters and hides all details from users. Table 9 lists the 
PULSE_FE parameters that can be automatically parsed from ABAQUS inputs by the developed 
PULSE application wrapper. 

Table 9. Parameters that can be Automatically Parsed from ABAQUS Input Files 

Parameter 
Name Data Type Explanation 

layerElements Dictionary The index of all elements of a certain layer 
NsetFarBoundary List The index of nodes on the far boundary 
NsetSymmetry List The index of nodes on the axis of symmetry (Y axis) 
ElsetLoad List The index of elements on the X axis 
surfaceNumber String Surface number to indicate where pressure is applied 
surfacePressure Double The pressure applied to the surface 
ampIN Dictionary FWD amplitude data 

 
This list covers most of the parameters that are available in ABAQUS input files. By 
automatically parsing these parameters, considerable amount of manual parsing efforts is 
avoided. Combining with the aforementioned input generation framework, these two techniques 
together make the entire simulation and analysis workflow fully automated. Specifically, with a 
set of input variables, the framework derives the corresponding calculated parameters after the 
finite element modelling without manual assistance. 
 
5.1.4  Cross-Language Plugin Interface 

The core functionality of the optimization framework lies in its ability to work with optimizers 
from different programming languages. To achieve this goal, a cross-language plugin interface 
was developed with three key features: (1) a cross-language protocol that allows the exchange of 
arbitrary basic data types and even complex or custom data structures such as dictionary, objects, 
and class; (2) a flexible scalar/vector interface that was designed to be compatible with 
optimizers regardless of whether they expect vector or scalar output, and (3) a client-server 
design that allows the optimizer to be placed on remote server or even cloud servers. Each 
feature is briefly described in the following sections. 
 
5.1.4.1  Data Structure Exchange Protocol  

Passing data from one programming language to another is challenging as they are represented 
and stored in quite different ways. Thus, it is important to have an intermediate layer that can 
connect different programming languages. The developed plugin interface employs the JSON 
(JavaScript Object Notation) protocol, which is a lightweight data-interchange format that is 
broadly supported by multiple programming languages including C#, C++, Java, Python (Pezoa, 
et al., 2016). JSON uses a text-based approach to store data, which makes the programming 
language irrelevant and the information readable for human audiences. The basic data types in 
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JSON are string, number, bool, and null. The fundamental data structures for JSON are (1) a 
collection of name/value pairs, which in other programming languages would be interpreted as 
object, record, struct, dictionary, hash table, keyed list, or associative array; and (2) an ordered 
list of values that are commonly interpreted as array, vector, list, or sequence. Note that the data 
structures can be nested, which enables JSON to store and represent complex data structure or 
classes. 
 
5.1.4.2  Flexible Scalar/Vector Interface 

Different optimizers are designed for different types of optimization problems. Some optimizers 
can correctly handle the case where the optimization target is a vector (a series of values), 
whereas a more common case is when the target is a scalar (a single value). To accommodate 
different optimizers, the interface is implemented to have two sets of outputs: a vector of 
calculated parameters and a scalar RMSRE calculated from difference between the calculated 
parameters and the measured parameters from FWD surface deflections. Thus, for vector-based 
optimizers like Newton’s method, they have all the needed details, which leads to fast 
convergence. For scalar-based optimizers like Bayesian and Reinforcement Learning, they use 
the RMSRE scalar, so they can still work well. 
 
5.1.4.3  Client-Server Design  

In the ideal case, the PULSE and optimizer would run side-by-side on the same device for a 
seamless data exchange and latency-free feedback. However, sometimes the optimization 
problem can be complex, and its resource demands can go beyond the capacity of a single 
machine. The plugin interface provides extra flexibility for this scenario by using a client-server 
design that can have PULSE and the optimizer run on different machines. The text-based data 
exchange protocol JSON ensures that the data exchange can stay untouched even if the sender 
and receiver are from different machines. This enables the user to offload the computation of 
optimizer to a remote server or even cloud to improve the optimization speed. 
 
5.1.5  Summary 

The complete overview of the optimization framework is shown in Figure 40. The overall 
workflow of the developed optimization framework is summarized as follows: 
 

• Step 1. PULSE gives an initial start point (a set of variables) 𝑥𝑥0 and passes it to the 
optimizer through the cross-language plugin interface. 

• Step 2. The optimizer decides the next point to try 𝑥𝑥𝑡𝑡+1, and passes it to input generation 
framework through the cross-language plugin interface. 

• Step 3. Input generation framework performs the analysis to prepare the ready-to-use 
inputs to PULSE application wrapper. 

• Step 4. PULSE application wrapper performs the FE modeling and analyzes the results 
using PULSE Analyzer to get the final calculated parameters and pass it to optimizer 
through the cross-language plugin interface. 

• Step 5. Optimizer checks the calculated parameters to see whether the optimization 
process has converged. If not, the process goes back to step 2. 
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Figure 40. Complete View of All Components of Optimization Framework.  
 

5.2  OPTIMIZATION PROBLEM FORMULATION 

This section presents two problem formulations that correspond to two different types of 
optimization strategies. In both formulations, the choice of parameters is consistent with the 
previous analysis in Section 4. 
 
5.2.1  Vector-Based Problem Formulation  

For the optimizers that can work with vector outputs, the optimization target is to have the 
calculated parameters approach the measured parameters as close as possible. Thus, the problem 
is formulated as: 
 

𝑷𝑷𝒄𝒄����⃗ = 𝑓𝑓(𝑽𝑽��⃗ ) (85) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ||𝑷𝑷𝒄𝒄����⃗ − 𝑷𝑷𝒎𝒎������⃗ ||  𝑤𝑤. 𝑟𝑟. 𝑡𝑡.   𝑽𝑽��⃗ ∈ 𝑹𝑹 (86) 

 
where 𝑓𝑓 is the abstraction of the process of input generation, FE modeling, and parameter 
analysis. 𝑽𝑽��⃗  is the variables vector, 𝑷𝑷𝒄𝒄����⃗  is the calculated parameters vector, and 𝑷𝑷𝒎𝒎������⃗  is the 
measured parameters vector. Due to differences in scales of the parameters, the optimizers 
potentially focus more on the large-scale variables. Fortunately, the proposed Newton’s method 
is based on individual gradients, which are robust to the variables’ scales. This problem is solved 
by using normalization techniques.  
 
5.2.2  Scalar-Based Problem Formulation 

A more general formulation is where the optimizers expect the output to be a scalar so that the 
output vector can be wrapped by RMSRE. The optimization target is thus to minimize the 
RMSRE scalar between the calculated parameters and the measured parameters. The problem 
formulation is defined as follows. Note that the optimization target is the RMSRE value, which 
is a scalar. 
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𝑷𝑷𝒄𝒄����⃗ = 𝑓𝑓(𝑽𝑽��⃗ ) (87) 

𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑷𝑷𝒄𝒄����⃗  ,𝑷𝑷𝒎𝒎������⃗ � = �1
𝑛𝑛
∑ �𝑃𝑃𝑐𝑐

𝑖𝑖−𝑃𝑃𝑚𝑚𝑖𝑖

𝑃𝑃𝑚𝑚𝑖𝑖
�
2

𝑛𝑛
𝑖𝑖=1  (88) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀    𝑅𝑅      𝑤𝑤. 𝑟𝑟. 𝑡𝑡.   𝑽𝑽��⃗ ∈ 𝑹𝑹 (89) 
 
5.2.3  Comparison of the Two Formulations 

Each of the aforementioned formulations has advantages and disadvantages. For the vector-based 
problem formulation, the key advantage is that it reveals more details and avoids the ill-condition 
issue. For example, suppose at point X the measured parameters are a, b, and c; then the 
optimizer tries a nearby point Y, which gives estimated parameters of 1.1a, 0.9b, and c. For the 
vector-based problem formulation, the change from X to Y leads parameter a to increase and b to 
decrease. However, for the scalar-based problem formulation the two calculated parameters at 
points X and Y might give similar RMSRE values, which does not give explicit clues to the 
optimizer about the possible impact of the change from X to Y. Such confusion could mislead 
the optimizer to make wrong optimization decisions and thus achieve suboptimal results. A key 
advantage of the scalar-based problem formulation is its generalization. Almost all optimizers 
can work with the scalar-based problem formulation, yet only a few can handle the vector-based 
problem formulation. Especially for the learning-based optimizers, they are designed to work on 
scalar outputs. Considering the reasons stated, both problem formulations are implemented in 
this study. 
 
5.3  TRADITIONAL OPTIMIZERS—NEWTON-RAPHSON METHOD 

With the help of the developed optimization framework, several different optimizers from the 
family of Newton-Raphson are implemented and evaluated (Ypma, 1995). The Newton-Raphson 
method is a classic numerical/mathematical-based optimization method. 
 
The Newton-Raphson method, also called Newton’s method, is an iterative algorithm that 
gradually approaches the root of target function by computing its derivative. Based on whether 
the target function is the optimization target itself or its derivative, the Newton’s method is 
categorized into first-order Newton’s method (also known as the root-finding algorithm) and 
second-order Newton’s method (the optimization algorithm). Note that the first-order Newton’s 
method is the default optimization approach in PULSE. 
 
5.3.1  First-Order Newton’s Method 

The intuition of the first-order Newton’s method is straightforward. For example, suppose there 
is a point 𝑥𝑥𝑛𝑛 on function 𝑓𝑓. The x-intercept of its tangent line is likely to be closer to the root of 
𝑓𝑓 (see Figure 41 for an example). Thus, by iteratively doing this, one can get closer to the root 
that solves the problem. 
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Figure 41. Example of How Newton’s Method Approaches the Root of a Quadratic Function 
from Initial Point x = 5 

In a former way, Taylor’s expansion is used on function 𝑓𝑓(𝑥𝑥) at 𝑥𝑥𝑛𝑛 : 
 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥𝑛𝑛) + 𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛) + 1
2
𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛)2 + ⋯ (90) 

 
Ignoring the higher-order items in Equation 90 gives the tangent line of 𝑥𝑥𝑛𝑛: 
 

𝑦𝑦 = 𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛) (91) 
 
The goal is to get the x-intercept (the 𝑥𝑥 that makes 𝑦𝑦 = 0). By denoting the x-intercept as 𝑥𝑥𝑛𝑛+1, 
the y function becomes: 
 

𝑦𝑦 = 𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛) = 0 (92) 
 
Thus, the updated equation for first-order Newton’s method is: 
 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 (93) 
 
In the subject problem, for the scalar-based problem formulation, the updated equation is: 
 

𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 −
𝑓𝑓(𝑽𝑽𝒏𝒏)
𝑓𝑓′(𝑽𝑽𝒏𝒏)

 (94) 
 
where 𝑽𝑽𝒏𝒏 is the current variables and 𝑽𝑽𝒏𝒏+𝟏𝟏 is the variables to try next. Given 𝑅𝑅 = 𝑓𝑓(𝑽𝑽𝒏𝒏) is a 
scalar, the corresponding derivative 𝑓𝑓′(𝑽𝑽𝒏𝒏) is a vector commonly called gradient. 
 
For the vector-based problem formulation, the multivariable equation is: 
 

𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 − 𝑱𝑱−𝟏𝟏(𝑽𝑽𝒏𝒏)𝒇𝒇(𝑽𝑽𝒏𝒏) (95) 
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It is different from the scalar-based equation as the 𝒇𝒇(𝑽𝑽𝒏𝒏) is a vector that makes its derivative 
𝑱𝑱(𝑽𝑽𝒏𝒏) a matrix called the Jacobian matrix. To adapt to matrix operations, the division becomes a 
left-multiplying of the inverse of Jacobian matrix and the corresponding vector output. 
 
For a multivariate Newton optimization problem, the transition from a scalar variable, xn, to a 
vector, Vn , necessitates a corresponding transformation of the scalar derivative, 𝑓𝑓′(𝑥𝑥𝑛𝑛), into the 
Jacobian matrix, 𝑱𝑱(𝑽𝑽𝒏𝒏). Consequently, leveraging matrix operations become feasible, wherein 
the inversion of the Jacobian matrix, 𝑱𝑱−𝟏𝟏(𝑽𝑽𝒏𝒏), followed by its multiplication with the vector, 
𝒇𝒇(𝑽𝑽𝒏𝒏), facilitates the derivation of the succeeding optimal solution, Vn+1, as shown in equation 
95. Multivariate optimization, though derived from single-variable optimization, is distinguished 
by its transition from scalar output and scalar derivative to vector output and matrix derivatives. 
 
The advantage of the first-order Newton’s method is its simplicity and the ability to work with 
vector-based problem formulation. The drawbacks include the dependence on derivative, which 
is often not available or hard to get for optimization problems (including the subject problem), 
and the sensitivity to the choice of initial point. In addition, the first-order Newton’s method does 
not provide convergence guarantee. 
 
5.3.2  Second-Order Newton’s Method 

The second-order Newton’s method focuses on finding the root of target function. In some 
scenarios, the target is more than just the root but the stationary (maximal/minimal) points of the 
target function. Given that the maximal/minimal points are only achieved when the derivative is 
zero, finding the root of the derivative means finding the maximal/minimal points of the target 
function. Recalling the Taylor expansion from first-order Newton’s method: 
 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥𝑛𝑛) + 𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛) + 1
2
𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛)2 + ⋯ (96) 

 
Truncating high-order items and applying the derivative gives: 
 

𝑦𝑦′ = 𝑓𝑓′′(𝑥𝑥𝑛𝑛)(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛) + 𝑓𝑓′(𝑥𝑥𝑛𝑛) = 0 (97) 
 
Thus, 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓′(𝑥𝑥𝑛𝑛)
𝑓𝑓′′(𝑥𝑥𝑛𝑛)

 (98) 
 
where 𝑓𝑓′′(𝑥𝑥𝑛𝑛) is the second derivative of the target function 𝑓𝑓, which is why the method is 
named the second-order method. For the scalar-based problem formulation, the update equation 
is: 
 

𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 − 𝑯𝑯−𝟏𝟏(𝑽𝑽𝒏𝒏)𝑓𝑓′(𝑽𝑽𝒏𝒏) (99) 
 
Similar to the first order’s formulas, 𝑽𝑽𝒏𝒏 represents the current variables, and 𝑽𝑽𝒏𝒏+𝟏𝟏 represents the 
variables to try next, and the division becomes a left-multiplying of the inverse. Here, the 
second-order derivative 𝑯𝑯(𝑽𝑽𝒏𝒏) is called the Hessian matrix. For the vector-based problem 
formulation, the update equation is: 
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𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 − 𝑯𝑯−𝟏𝟏(𝑽𝑽𝒏𝒏)𝑱𝑱(𝑽𝑽𝒏𝒏) (100) 
 
Here, the second-order derivative 𝑯𝑯(𝑽𝑽𝒏𝒏) is the Hessian tensor. Compared with the first-order 
method, the second-order method is less sensitive to the choice of initial point and can work on 
complex/large-scale optimization problems. However, the Hessian matrix is a p-by-p matrix 
where p is the number of variables. For large number of variables, computing, inverting, and 
storing the Hessian matrix can be very expensive and, in some cases, unfeasible. 

 
5.3.3  Finite Difference 

Newton’s method, either the first or second order, depends on the derivatives. Yet the target 
function in the optimization framework is an abstract of the process of input generation, FE 
modeling, and deflection analysis, which is non-differentiable. Thus, the finite difference is used 
as an approach to approximate the derivative of the target function. Commonly used finite 
difference types include forward-difference, backward-difference, and central-difference. 
Researchers use forward-difference to reduce the number of function evaluations during 
optimization. The forward-difference equation is: 
 

𝑓𝑓′(𝑥𝑥) ≈ 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(ℎ)
ℎ

 (101) 
 
where ℎ is the step size. Typically, 1 percent of 𝑥𝑥 is used as the step size but, for some variables, 
special values are used to make the approximation more accurate. 
 
5.3.4  Implementation 

With the cross-language optimizer interface, the optimizers can be implemented in any 
programming language. The Newton’s method optimizers are implemented in Python to leverage 
its high-performance matrix operation such as matrix multiplication and inversing and the built-
in Lambda function factory, which makes computation of higher-order derivatives much faster. 
A high-level example of the optimizer workflow is shown in Figure 42. 
 

 
Figure 42. Code Snippet of Newton Optimizer Implementation  
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5.3.5  Evaluation 

The Newton method optimizers are evaluated using both a synthetic one-layer pavement 
structure and a synthetic three-layer pavement structure. Overall, the evaluation results suggest 
that the implementation of the optimization framework and the optimizers are correct and 
effective. The evaluation on real-world measured data is also conducted. 
 
5.3.5.1  One-Layer Pavement Structure 

The evaluation of the one-layer pavement structure is performed to check the correctness of the 
developed optimizer since the ground truth can be easily derived. The target vertical deflections 
that are supposed to be fitted are shown in Figure 43. These curves are generated by using the 
following variable set {E = 20,000 psi, Rayleigh alpha = 20, Rayleigh beta = 0.002}. The 
optimizers are given initial variables set of {E = 5,000 psi, Rayleigh alpha = 5, Rayleigh beta = 
0.006}, and they are expected to tweak the variables to recover the ground truth variable set that 
is used to generate target vertical deflections. Note the ground truth variables are unknown to the 
optimizers. 
 

Figure 43. Synthetic Vertical Deflections for One-Layer Pavement Structure  

The first-order Newton optimizer is first evaluated using both the scalar- and vector-based 
formulations, as shown in Figures 44 and 45, respectively. As the optimization progress curves 
show, the Newton optimizer can reduce the RMSRE to less than 0.1 percent (more than 99.9 
percent accuracy) in both scalar- and vector-based formulations, yet the convergence rate (speed) 
differs. Specifically, the Newton optimizer on scalar-based formulation takes 30 iterations to 
converge to a reasonably good RMSRE, and the final recovered variables are {E: 19980, 
Rayleigh alpha: 20.755, Rayleigh beta: 0.001979}; whereas the Newton optimizer on vector-
based formulation takes only 5 iterations to converge to a similarly good RMSRE level. This 
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difference in speed matches the previous theoretical analysis. Note that because derivatives are 
approximated by finite difference, the vector-based formulation would need more calls to the 
target function. For example, in scalar-based formulation, the number of calls it takes to get the 
derivative (gradient) is equal to the number of variables plus one; whereas in vector-based 
formulation, the number of calls it takes to get derivative (Jacobian matrix) is equal to the 
number of variables multiplied by the number of parameters. That means the actual difference 
between these two formulations is smaller than it appears. 
 

 

Figure 44. First-Order Newton Optimizer Fitting One-Layer Pavement Structure using Scalar-
Based Problem Formulation  

 

Figure 45. First-Order Newton Optimizer Fitting One-Layer Pavement Structure using Vector-
Based Problem Formulation  
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The second-order Newton optimizer is also evaluated using the vector-based problem 
formulation. The results are shown in Figure 46, which indicates that its convergence is not as 
fast as the first-order methods. Researchers attempted to adjust the selection of parameters (see 
Section 4.4), but observed results were not better than the first-order method. 

 

 

Figure 46. Second-Order Newton’s Method Optimizer Fitting One-Layer Pavement Structure 
using Vector-Based Problem Formulation    

5.3.5.2  Three-Layer Pavement Structure 

Next, a more complicated three-layer pavement structure was evaluated. The target vertical 
deflections that were to be fitted are shown in Figure 47. These curves are generated by using the 
variables set shown in Table 10.    
 
Similar to the one-layer case, the ground truth variables set that is used to generate the target 
vertical deflections was targeted. Note the ground truth variables are also unknown to the 
optimizers. 
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Figure 47. Synthetic Vertical Deflections and FWD Loading Time Histories for Three-Layer 

Pavement Structure 

Table 10. Results of First-Order Newton Optimization Performance in Three-Layer System 

Layer Variable 
Target 
Value 

Seed 
Value 

Recovered 
Value by 
Optimizer 

AC 
Sigmoidal function 
coefficients 

delta –0.134 –1 –0.920 
alpha 3.703 4.65 4.941 

betaPrime –0.465118 –
0.265118 –0.468556 

gamma –0.548 –0.65 –0.398 
Modulus at 17 Hz (ksi) E1 469 286 447 

Base 
Modulus (ksi) E2 40 50 40 
Rayleigh Damping 
Coefficient βR Bbase 0.002 0.003 0.00193 

Subgrade 
Modulus (ksi) E3  5 7 5 
Rayleigh Damping 
Coefficient βR BSG 0.002 0.001 0.00197 

 
For the first-order Newton optimizer on vector-based problem formulation, the setting that works 
best in the one-layer structure is evaluated for the three-layer system. The optimization history of 
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40 iterations is shown in Figure 48. The final RMSRE is 0.056 percent (over 99.9 percent 
accuracy). The final recovered variables are:  
 

• Delta = –0.92007093 
• Alpha = 4.49417398 
• BetaPrime = –0.46855696 
• Gamma = –0.39846419 
• E2 = 40,229.533 psi 
• BBASE = 0.0019321 
• E3 = 5,000.955 psi 
• BSG = 0.0019732 

 
The robustness of Newton’s method is tested when the seed variables are arbitrary. The 
evaluation is performed again with native seeds (See Table 11), and it converges with RMSRE of 
0.0758 percent. The results suggest that Newton’s method is robust to different seed values. 
 
It can be concluded that even for the much more complicated three-layer system with eight 
variables, the first-order Newton’s method is still capable of recovering the ground truth 
variables. Further evaluation using real-world measured data is conducted. 

 

 

Figure 48. First-Order Newton’s Method Optimizer Fitting Three-Layer Pavement Structure 
under Vector-Based Problem Formulation  
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Table 11. Cross-Comparison of Optimization Performance in Three-Layer System with 
Unoptimized Seeds 

Layer Variable 
Target 
Value 

Seed 
Value 

Recovered 
Value by 
Optimizer 

AC Sigmoidal coefficients 

delta –0.134 0 0.937 
alpha 3.703 1 1.998 
betaPrime –0.465118 0 0.421 
gamma –0.548 0 –2.165 

Modulus at 17 Hz (ksi) E1 469 3 553.6 

Base 
Modulus (ksi) E2 40 50 39.6 
Rayleigh Damping 
Coefficient βR Bbase 0.002 0.003 0.0021 

Subgrade 
Modulus (ksi) E3 5 7 4.9 
Rayleigh Damping 
Coefficient βR BSG 0.002 0.001 0.002 

 
The second-order Newton’s method is also evaluated with the three-layer system and the results 
are shown in Figure 49. It was observed that the second-order method did not progress with a 
stable convergence. This could be improved by integrating a line search algorithm to adjust the 
step size of second-order Newton’s method, which is also known as damped or relaxed Newton’s 
method. In damped Newton’s method, the updated equation is:  
 

𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 − 𝛾𝛾𝑯𝑯−𝟏𝟏(𝑽𝑽𝒏𝒏)𝑓𝑓′(𝑽𝑽𝒏𝒏) 
 
where 0 < 𝛾𝛾 < 1. This extra parameter 𝛾𝛾 is to help Newton’s method converge better when 
facing overlarge gradient values. There is an example in Appendix A. 
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Figure 49. Second-Order Newton’s Method Optimizer Fitting Three-Layer Pavement Structure 
under Vector-Based Problem Formulation    

5.3.5.3  Evaluation of Field-Measured Deflection Data 

Researchers further evaluated the performance of the Newton’s method optimizers with field-
measured deflection data on a three-layer flexible pavement system. The field-measured data 
were obtained from the LTPP database for test section 46-0804 in South Dakota. The section was 
built in June 1993, and it consisted of a 7.1-inch AC layer and a 12-inch unbound, granular base 
layer built over an untreated, silty clay subgrade. The FWD data used in this study were collected 
on June 8, 1994, using a Dynatest® FWD, on the eastbound lanes at milepost 400 of South 
Dakota Highway 1804, which is 5.5 miles northwest of Pollock, South Dakota. The surface and 
air temperatures at the time of testing were 48 °F and 57 °F, respectively. The measured 
deflections are shown in Figure 50.  

 
Both vector- and scalar-based problem definitions were evaluated on the measured data. For the 
vector-based problem definition, the optimization progress of first-order Newton’s method is 
shown in Figure 51. As the figure shows, the first-order Newton’s method works well for field 
data. Specifically, the optimization progress converges at iteration 3, which indicates the power 
of Newton’s method optimizer. 
 
The final results are shown in Table 12 with a final RMSRE of 0.007 percent. From the 
perspective of function evaluations, the Newton’s method achieves the RMSRE with less than 25 
function evaluations, as shown in Figure 52, which demonstrates its efficiency. 
 
Given the promising results of Newton’s method with the vector-based problem definition, both 
first- and second-order Newton’s method with scalar-based problem definition were further 
evaluated. Both methods diverged at iteration 1 when working on field data. This evaluation 
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shows the limitations of Newton’s method when working with scalar-based problem definition 
and the necessity of using different problem definitions for different optimizers. 
 

Figure 50. Field-Measured Deflections and FWD Loading Time Histories from an Actual Three-
Layer System   

 

Figure 51. First-Order Newton’s Method Optimizer Fitting Field Deflection Data on a Three-
Layer Pavement under Vector-Based Problem Formulation 
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Figure 52. First-Order Newton Optimizer Fitting Field Deflection Data on a Three-Layer 
Pavement under Vector-Based Problem Formulation with Respect to Number of Function 

Evaluations  

Table 12. Final Results of First-Order Newton’s Method on Field-Measured Data with Vector-
Based Problem Definition 

Layer Variable 
Seed 
Value 

Recovered Value by 
Optimizer 

AC Sigmoidal coefficients 

delta –0.9 –1.068 
alpha 4.5 5.160 
betaPrime –0.7 –0.6974 
gamma –0.4 –0.2837 

Modulus at 17 Hz (ksi) E1  356 563.0 

Base 
Modulus (ksi) E2 20 40.0 
Rayleigh Damping 
Coefficient βR BBase 0.003 0.002448 

Subgrade 
Modulus (ksi) E3 5 13.1 
Rayleigh Damping 
Coefficient βR BBase 0.003 0.002448 

 
5.4  TRADITIONAL OPTIMIZERS—QUASI-NEWTON METHOD 

In Section 5.3.2, the second-order Newton’s method that relies on the second partial-derivative 
Hessian matrix rather than the gradient to perform optimization was evaluated. This required 
computing and storing the inverse of Hessian matrix, which could be computationally expensive 
(𝑂𝑂(𝑛𝑛3) computational complexity) even with the help of mathematical approximation techniques 
like SVD. The Quasi-Newton methods are proposed to approximate the Hessian matrix (Chen et 
al., 2012) without computing it at every iteration to speed up the computation. The 
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approximation methods include the Broyden–Fletcher–Goldfarb–Shanno (BFGS) (Moritz et al., 
2016), Broyden (Huang et al., 2015), Davidon–Fletcher–Powell (DFP) (Pu & Wu, 1990), and 
Symmetric Rank 1 (SR1) (Brust et al., 2016) algorithms. The general idea is to compute the 
Hessian matrix only once and update it at every iteration instead of computing it from scratch 
every time. In this way, the per-iteration computation cost could be reduced at the price of 
potential robustness loss. 
 
5.4.1  Broyden–Fletcher–Goldfarb–Shanno Algorithm  

The BFGS algorithm (Moritz et al., 2016) is one of the most popular Quasi-Newton methods. Its 
core idea is to gradually approximate the Hessian matrix by a generalized secant method based 
on gradients. By using linear algebra tricks, the matrix inversion could be avoided, and the 
overall computational complexity could be reduced to 𝑂𝑂(𝑛𝑛2), which is one magnitude lower than 
𝑂𝑂(𝑛𝑛3) of the second-order Newton’s method. Specifically, 𝐵𝐵 denotes the BFGS approximation 
of the Hessian matrix, 𝑥𝑥 denotes the variables, and 𝑔𝑔 denotes the gradient of target function 
𝑓𝑓(𝑥𝑥). During initialization, 𝐵𝐵0 is set to 𝐼𝐼. At iteration 𝑡𝑡, the following relations are obtained: 
 

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝐵𝐵𝑡𝑡−1𝑔𝑔 (102) 
𝑠𝑠𝑡𝑡 = 𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡 (103) 
𝑦𝑦𝑡𝑡 = 𝑔𝑔𝑡𝑡+1 − 𝑔𝑔𝑡𝑡 (104) 
𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 −

𝐵𝐵𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑇𝑇𝐵𝐵𝑡𝑡𝑇𝑇

𝑠𝑠𝑡𝑡𝑇𝑇𝐵𝐵𝑡𝑡𝑠𝑠𝑡𝑡
+ 𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡𝑇𝑇

𝑦𝑦𝑡𝑡𝑇𝑇𝑠𝑠𝑡𝑡
 (105) 

 
By iteratively updating the approximation of the Hessian matrix, the optimization process 
approaches the target variables. For the object problem, the target function is not differentiable. 
Thus, the gradient 𝑔𝑔 is approximated by finite-difference as discussed in Section 5.3.3. 
  
5.4.2  Numerical Stability 

The BFGS algorithm was implemented and evaluated in both the one- and three-layer systems 
with scalar-based problem definition. All settings were consistent with previous evaluation in 
Section 5.3.5. In the one-layer system, the BFGS was able to quickly converge to an optimal 
point of 0.533 percent RMSRE, as shown in Figure 53. Compared with the Newton’s method 
results, the RMSRE was higher, yet the optimization took less time, which matched exactly with 
previous analysis. 
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Figure 53. Optimization Progress of BFGS on One- and Three-Layer Systems  

Note that the optimization on the three-layer system ends prematurely as the BFGS gives illegal 
input to the finite element model. For example, as early as iteration 2 on the three-layer system, 
the BFGS tries to set the Rayleigh beta damping coefficients of the second and third layers to be 
–0.32 and –0.36, respectively. This directly stops the optimization process, as shown in Figure 
54. Such behavior is expected as the optimization algorithm has no knowledge of the physical 
meaning of the variables. As a result, it will arbitrarily explore the parameter space. Researchers 
first tried to work around this by implementing a guard procedure in the middleware (see Section 
5.1.4) to fix the input when it is illegal. For example, the Rayleigh beta damping coefficients are 
set as a small positive number if they are non-positive. However, experimental evaluation shows 
that such patch often confuses the optimizer and thus makes the optimization diverge. To solve 
this problem, the framework will return a large punishment RMSRE value (e.g., 300 percent) to 
the optimizer if illegal inputs are detected. Evaluation suggests that this patch works very well. 
As shown in Figure 53, the BFGS method converges to optimal point of 0.420 percent RMSRE 
within 10 iterations and the recovered variables are shown in Table 13.  
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Table 13. Optimization Performance of BFGS in Three-layer System 

Layer Variable 
Target 
Value 

Seed 
Value 

Recovered Value by 
Optimizer 

AC 

Sigmoidal 
coefficients 

delta –0.134 –1 –0.925 
alpha 3.703 4.65 4.682 

betaPrime –0.465118 –
0.265118 –0.289 

gamma –0.548 –0.65 –0.697 
Modulus at 17 Hz 
(ksi) E1 469 286 424.7 

Base 
Modulus (ksi) E2 40 50 39.8 
Rayleigh Damping 
Coefficient βR BBase 0.002 0.003 0.00150 

Subgrade 
Modulus (ksi) E3 5 7 4.9 
Rayleigh Damping 
Coefficient βR BSG 0.002 0.001 0.00198 

 

 

Figure 54. How Lack of Numerical Stability Stops Optimization from 𝒙𝒙 to 𝒚𝒚∗ (The red X 
represents the crash due to illegal input.) 

5.4.3  Ablation Study 

Next, researchers extended the evaluations of BFGS optimizer to field data, which was more 
challenging for the optimization than the previously tested synthetic data. The BFGS 
optimization on field data resulted in an RMSRE of 47.97 percent, which was far from the 
desired level of error. Thus, an ablation study of various possible improvements of the BFGS 
with field data was run to further understand performance impact of different improvements on 
the BFGS. 
 
The first optimization that was applied was the step size tuning. By default, the BFGS optimizer 
uses a very small (1e–6 or smaller) step size for finite difference computation. For the target 
problem, this step size was trivial and did not cause any difference in the deflections. Thus, the 
step size was updated to 1 percent of the seed values. The evaluation shows this led to a better 
RMSRE of 34.43 percent compared to the previous value of 47.97 percent. 
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Normalization was then implemented for improvement. Normalization is a common action in 
optimization that is used to fix the problem that occurs when variables with large values receive 
overwhelming attention from the optimizer while the variables with small values are ignored. 
Specifically, normalization works by rescaling variables with different scales into the same scale 
so that all variables influence the optimizer to the same extent. Figure 55 shows an example of 
how normalization reshapes a 2D optimization space and makes it easier to find optimal point. 
 

 
(a) (b) 

Figure 55. How Normalization Impacts Optimization: (a) Optimization Space without 
Normalization and (b) Optimization Space with Normalization (Arrows represent optimization 

steps.) 

In the target problem, the range of the variables were different from the levels of 0.001 to 100. 
Thus, normalization was a favorable way to improve the BFGS optimizer performance. In 
summary, the implementation of normalization happens in the middle layer of the optimization 
framework. The middle layer uses the initial values (seed values) of all variables as the 
normalization base, so that each variable will be divided by its initial value before passing to the 
optimizer. There are two advantages of this implementation. First, all optimization operations 
happen at middle layer where both the FE simulation and the optimizer workflows stay 
untouched. This makes the normalization transparent, and no modification is needed on the FE 
simulation or the optimizer. Second, by using initial values as normalization bases, the 
optimization framework does not need prior knowledge of the variables, which makes it a more 
generalized and flexible approach. 
 
The BFGS with normalization was evaluated on field data. The results aligned with the 
researchers’ expectation: BFGS with normalization had an improved RMSRE of 34.54 percent 
compared with the previous RMSRE of 47.97 percent of the original BFGS, which is also 
referred to as vanilla BFGS. 
 
The BFGS with both the tuned step size and the normalization improvements was further 
evaluated. The optimization process is shown in Figure 56. The figure shows that the 
optimization ran smoothly, and the final RMSRE was 13.20 percent. 
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Figure 56. Optimization Progress of BFGS Optimizer on Field-Measured Data with Tuned Step 
Size and Normalization 

The impacts of the two improvements are summarized in Table 14. Although the final RMSRE, 
even with two improvements, was still above the desired levels, it shows that these two 
improvements are useful and could be applied to other optimizers. 

Table 14. Optimization Performance of BFGS on Field-Measured Data with Different 
Improvements 

Name Final RMSRE (%) 
Original BFGS 47.97 
BFGS with tuned step size 34.43 
BFGS with normalization 34.54 
BFGS with both tuned step size and normalization 13.20 

 
5.4.4  Limited-Memory BFGS with Bound Constraints 

The limited-memory BFGS with bound constraints (L-BFGS-B) algorithm (Byrd et al., 1995) is 
an extension of the BFGS algorithm. The main differences are: (1) it avoids the potentially 
memory-expensive matrix operation of 𝐵𝐵𝑡𝑡−1𝑔𝑔 (see Equation 102 in Section 5.4.1), and (2) it is 
able to handle simple box constraints (bound constraints). To do that, it uses a recursion loop to 
compute 𝐵𝐵𝑡𝑡−1𝑔𝑔 and a gradient method to identify the free variables (those inside the constraints) 
and fixed variables (those on the boundaries of constraints). Given its promising features, the L-
BFGS-B was applied to solve the object optimization problem. 
 
5.4.5  Evaluation 

The L-BFGS-B algorithm was evaluated on the one- and three-layer systems with a scalar-based 
problem definition. All settings were consistent with the previous evaluation described in Section 
5.3.5. 
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As shown in Figure 57, the L-BFGS-B algorithm performed similarly to the original BFGS. It 
converged to an optimal point of 1.273 percent RMSRE on the one-layer system and an optimal 
point of 1.361 percent RMSRE on the three-layer system. The details of recovered variables are 
shown in Table 15. 

Figure 57. Optimization Progress of L-BFGS-B in One- and Three-Layer Systems 

Table 15. Optimization Performance of L-BFGS-B in a Three-Layer System 

Layer Variable 
Target 
Value 

Seed 
Value 

Recovered 
Value by 
Optimizer 

AC Sigmoidal coefficients 

delta –0.134 –1 –1.008
alpha 3.703 4.65 4.520 
betaPrime –0.465118 –0.265118 –0.262
gamma –0.548 –0.65 –0.647

Modulus at 17 Hz (ksi) E1 469 286 222.4 

Base 
Modulus (ksi) E2 40 50 49.8 
Rayleigh Damping 
Coefficient βR BBase 0.002 0.003 0.00301 

Subgrade 
Modulus (ksi) E3 5 7 5,1 
Rayleigh Damping 
Coefficient βR BSG 0.002 0.001 0.00100 

Researchers further evaluated L-BFGS-B performance on the field-measured data. The 
optimization progress is shown in Figure 58. Compared with BFGS, which converges with large 
RMSRE, the L-BFGS-B ran smoothly and converged at iteration 7 with RMSRE of 1.4689 
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percent. The recovered variables are shown in Table 16. Other classical optimizers that do not 
rely on derivatives to function were evaluated next. 
 

 

Figure 58. Optimization Progress of L-BFGS-B on Field-Measured Data for a Three-Layer 
System  

Table 16. Optimization Performance of L-BFGS-B on Field-Measured Data for a Three-Layer 
System 

Layer Variable Seed Value 

Recovered 
Value by 
Optimizer 

AC Sigmoidal coefficients 

delta –0.9 –0.8284 
alpha 4.5 4.787 
betaPrime –0.7 –0.8438 
gamma –0.4 –0.3495 

Modulus at 17 Hz (ksi) E1 356 816.8 

Base Modulus (ksi) E2 20 23.2 
Rayleigh Damping Coefficient βR BBase 0.003 0.002788 

Subgrade Modulus (ksi) E3 5 13.6 
Rayleigh Damping Coefficient βR BBase 0.003 0.002788 

 
5.5  POWELL’S CONJUGATE DIRECTION METHOD 

Powell’s conjugate direction method (Powell, 1964), commonly referred to as Powell’s method, 
is a heuristic algorithm that does not need derivatives to work. It is also capable of working with 
constraints, which makes it a promising approach for solving the object optimization problem. 
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5.5.1  Algorithm 

The core idea of Powell’s method is that the local extremums could form a line that conjugates to 
the direction towards global extremums, which is why it is named conjugate direction method. 
Specifically, Powell’s method initializes a set of search direction vectors 𝑆𝑆 to be the unit vectors 
on each dimension of search space. At each iteration, 𝑥𝑥 denotes the current point and 𝑓𝑓(𝑥𝑥) 
denotes the target function. 
 

𝑥𝑥𝑡𝑡 = 𝑥𝑥 (106) 
 
For each direction 𝑠𝑠 in 𝑆𝑆: 

 
𝛾𝛾 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓(𝑥𝑥𝑡𝑡 + 𝛾𝛾𝛾𝛾))  (107) 

 
𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝛾𝛾𝛾𝛾 (108) 

 
then: 

 
𝑠𝑠∗ = 𝑥𝑥 − 𝑥𝑥𝑡𝑡 (109) 

 
𝛾𝛾∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥 + 𝛾𝛾∗𝑠𝑠∗)  (110) 

 
𝑥𝑥 = 𝑥𝑥 + 𝛾𝛾∗𝑠𝑠∗ (111) 

 
Update 𝑆𝑆 with 𝑠𝑠∗. From this algorithm, it is clear that Powell’s method does not need the 
derivative information. 
 
5.5.2  Evaluation 

Powell’s method was evaluated on the one- and three-layer systems with a scalar-based problem 
definition. All settings were consistent with the previous evaluation described in Section 5.3.5. 
The optimization progress is shown in Figure 59. In the one-layer system, the final RMSRE was 
0.0290 percent, and in the three-layer system, the final RMSRE was 0.125 percent. Table 17 
shows the recovered variables. 
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Figure 59. Optimization Progress of Powell’s Method in One- and Three-Layer Systems  

Table 17. Optimization Performance of Powell’s Method in the Three-Layer System 

Layer Variable 
Target 
Value Seed Value 

Recovered 
Value by 
Optimizer 

AC 
Sigmoidal  
Coefficients 

delta –0.134 –1 –1.316 
alpha 3.703 4.65 4.451 
betaPrime –0.465118 –0.265118 –0.897 
gamma –0.548 –0.65 –1.151 

Modulus at 17 Hz (ksi) E1 469 286 542.3 

Base 
Modulus E2 40 50 39.0 
Rayleigh Damping 
Coefficient βR BBase 0.002 0.003 0.00196 

Subgrade 
Modulus (ksi) E3 5 7 4.9 
Rayleigh Damping 
Coefficient βR (ksi) BSG 0.002 0.001 0.00198 

 
It is worth noting that Powell’s method uses a great number of function evaluations in each 
iteration as it needs to do a line search along every direction (see Equation 107). This can be 
considered a drawback compared to the previous derivative-based approaches. Next, the 
Powell’s method optimizer on field-measured deflections of a three-layer system was evaluated 
(Figure 60 and Table 18).  
 
From the optimization progress in Figure 60, the Powell’s method optimizer seemed to run 
smoothly on field-measured data. The final RMSRE was 1.95 percent. However, the recovered 
variables (Table 18) were unreasonable. Notably, the gamma was a positive value, 0.19. 
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According to Equation 76, this means the E (time-temperature-dependent relaxation modulus) 
would decrease as frequency increases, which is unrealistic. This is understandable because 
optimizers have no background knowledge about what the physical meaning of variables are. 
Therefore, they will arbitrarily explore the optimization space and stop at a point with low 
RMSRE, which might not be a feasible solution in practice. Thus, constrained optimization was 
evaluated as a way to fix this issue. 
 

 

Figure 60. Optimization Progress of Powell’s Method on Field-Measured Deflections of a Three-
Layer System  

Table 18. Optimization Performance of Powell’s Method on Field-Measured Deflections of a 
Three-Layer System 

Layer Variable 
Seed 
Value 

Recovered 
Value by 
Optimizer 

AC Sigmoidal coefficients 

delta –0.9 –0.9958 
alpha 4.5 4.515 
betaPrime –0.7 –0.9186 
gamma –0.4 0.1958 

Modulus at 17 Hz (ksi) E1 356 99.6 

Base Modulus (ksi) E2 20 41.9 
Rayleigh Damping Coefficient βR BBase 0.003 0.003179 

Subgrade Modulus (ksi) E3 5 12.6 
Rayleigh Damping Coefficient βR BBase 0.003 0.003179 
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5.5.3  Powell’s Method Optimizer with Constraints 

Given that the Powell’s method optimizer provided unpractical solutions, researchers proposed 
to use constrained optimization to instruct the optimizer to stay in a certain area of the 
optimization space to avoid infeasible solutions. For the target problem, researchers constrained 
the Powell’s method optimizer to only consider the solutions with gamma smaller than zero. The 
optimization progress with constraints is shown in Figure 61. Note that the x-axis of this figure is 
the number of function evaluations. The final RMSRE of 8.092 percent was higher than the 
RMSRE without constraints. This was expected as the optimizer with constraints cannot freely 
explore the optimization space and can only pick solutions from a subset of all possible 
solutions, which makes the RMSRE higher. 
 

 

Figure 61. Optimization Progress of Powell’s Method on Field-Measured Deflection of a Three-
Layer System with Constraints (Note the x-axis is number of function evaluations.) 

The recovered variables are summarized in Table 19, which shows the Powell’s method 
optimizer followed the constraints well and set the recovered gamma to a negative value. 
However, it should also be noted that this gamma value is close to zero, which suggests that 
Powell’s method could still prefer a positive gamma but was unable to do so as it was limited by 
the constraints. From an optimization perspective, this phenomenon is called local optimal, 
where the optimizer mistakenly selects a non-optimal solution as the optimal one. 
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Table 19. Optimization Performance of Powell’s Method in the Field-Measured Three-Layer 
System with Constraints 

Layer Variable Seed Value 

Recovered 
Value by 
Optimizer 

AC Sigmoidal coefficients 

delta –0.9 –0.9958 
alpha 4.5 4.299 
betaPrime –0.7 –0.9141 
gamma –0.4 –0.002975 

Modulus at 17 Hz (ksi) E1 356 119.1 

Base Modulus (ksi) E2 20 91.4 
Rayleigh Damping Coefficient βR BBase 0.003 0.005986 

Subgrade Modulus (ksi) E3 5 11.6 
Rayleigh Damping Coefficient βR BBase 0.003 0.005986 

 
To improve the Powell’s method performance with constraints, different seed (initial) values 
were used to get the Powell optimizer out of the local optimal. The first set of seeds evaluated 
was a native one with all variables set to zero. This set led the FE model to crash. Then 
researchers tried a different set by cutting all seed values to half of the original values. This one 
worked well, and the optimization progress is shown in Figure 62. The final RMSRE is 3.956 
percent, and the recovered values are shown in Table 20 together with the recovered variables 
with original seed values as comparison. It is clear that the seed values play an important role in 
the convergence point of optimizers. The impact of seed values was then systematically 
evaluated for all optimizers. 
 

 

Figure 62. Optimization Progress of Powell’s Method on Field-Measured Deflections of a Three-
Layer System with Constraints and a Different Seed Set (Note the x-axis is the number of 

function evaluations.) 
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Table 20. Optimization Performance of Powell on Field-Measured Deflections of a Three-Layer 
System with Constraints and Two Seed Sets  

Layer Variable 

Previous 
Seed 
Value 

Previous 
Recovered 

Value 
Seed 
Value 

Recovered 
Value 

AC 

Sigmoidal 
Coefficients 

delta –0.9 –0.9958 –0.45 –0.1693 
alpha 4.5 4.299 2.25 3.129 
betaPrime –0.7 –0.9141 –0.35 –2.207 
gamma –0.4 –0.002975 –0.2 –1.00471 

Modulus at 17 Hz 
(ksi) E1 356 119.1 10.0 729.1 

Base 
Modulus (ksi) E2 20 91.4 10.0 17.8 
Rayleigh Damping 
Coefficient βR BBase 0.003 0.005986 0.0015 0.002948 

Subgra
de 

Modulus (ksi) E3 5 11.6 2.5 15.6 
Rayleigh Damping 
Coefficient βR BBase 0.003 0.005986 0.0015 0.002948 

 
5.6  NELDER–MEAD METHOD 

The Nelder–Mead (Gao & Han, 2012) method, also known as downhill simplex method, is a 
commonly used heuristic numerical method for multidimensional optimization. Like Powell’s 
method, the Nelder–Mead method is a direct-search algorithm that does not rely on derivatives to 
work. 
 
5.6.1  Algorithm 

The Nelder–Mead method works by gradually moving and shrinking a simplex (polytope) to an 
optimal point on the optimization space. Specifically, a simplex is initialized around the initial 
point. For an optimization space of 𝑛𝑛 dimension, the simplex will have 𝑛𝑛 + 1 vertices 
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1. For example, a triangle on a plane, a tetrahedron in 3D space, and so forth. Then 
the algorithm begins as follows: 
 

• Step 1: Calculate the centroid of current simplex as 𝑥𝑥0. 
• Step 2: Calculate next point 𝑥𝑥𝑡𝑡 = 𝑥𝑥0 + 𝛼𝛼(𝑥𝑥0 − 𝑥𝑥𝑛𝑛+1). 
• Step 3: If 𝑥𝑥𝑡𝑡 is the best point among all vertices 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1, it means the optimal 

point is likely outside current simplex. Thus, the need to expand the simplex. The expand 
point 𝑥𝑥𝑒𝑒 = 𝑥𝑥0 + 𝛾𝛾(𝑥𝑥𝑡𝑡 − 𝑥𝑥0). 

• Step 4: Contract the simplex by 𝑥𝑥𝑐𝑐 = 𝑥𝑥0 + 𝜌𝜌(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥0). 
• Step 5: If none of  𝑥𝑥𝑡𝑡, 𝑥𝑥𝑒𝑒 , 𝑥𝑥𝑐𝑐 is better than original vertices 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1, shrink all 

vertices 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1 by 𝑥𝑥𝑖𝑖 = 𝑥𝑥1 + 𝜎𝜎(𝑥𝑥𝑖𝑖 − 𝑥𝑥1) except the best vertex. Or, if some 
vertices in 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑒𝑒 , 𝑥𝑥𝑐𝑐 are better than the original vertices 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1, pick 𝑛𝑛 best 
vertices from 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑒𝑒 , 𝑥𝑥𝑐𝑐 , 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1 as the new simplex. 

• Step 6: Go to Step 1. 
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The 𝛼𝛼, 𝛾𝛾,𝜌𝜌,𝜎𝜎 are parameters and by default 𝛼𝛼 = 1, 𝛾𝛾 = 2, 𝜌𝜌 = 1
2

, and 𝜎𝜎 = 1
2
. This algorithm is 

different from previous optimizers’ algorithms, where some mathematical information (for 
example, derivative/gradients) are computed and used to update the solution. As a heuristic 
algorithm, the Nelder–Mead method tries to resemble how a human thinks and behaves when 
facing an optimization problem. 
 
5.6.2  Evaluation 

The Nelder–Mead method was evaluated with the same synthetic three-layer pavement structure 
used for previous methods. The details of the target system are shown in Figure 47. The 
optimization progress of Nelder–Mead is shown in Figure 64. The method took almost 300 
function evaluations to converge. It should be noted that the final 50 function evaluations had 
RMSRE within the 1 percent range. The final RMSRE was 0.5835 percent, and the recovered 
variables are shown in Table 21.  
 

 

Figure 63. Optimization Progress of the Nelder–Mead Method on Deflections of a Synthetic 
Three-Layer Pavement Structure 
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Table 21. Optimization Performance of the Nelder–Mead Method in the Three-Layer Pavement 
Structure 

Layer Variable 
Target 
Value 

Seed 
Value 

Recovered 
Value by 
Optimizer 

AC Sigmoidal Coefficients 

delta –0.134 –1 –0.0070439
alpha 3.703 4.65 5.321895 
betaPrime –0.465118 –0.265118 –0.00271253
gamma –0.548 –0.65 –0.0129539

Modulus at 17 Hz (ksi) E1 469 286 477.2 

Base 
Modulus (ksi) E2 40 50 38.3 
Rayleigh Damping 
Coefficient βR BBase 0.002 0.003 0.0030104 

Subgrade 
Modulus (ksi) E3 5 7 5.0 
Rayleigh Damping 
Coefficient βR BSG 0.002 0.001 0.00216480 

Next, the Nelder–Mead method was evaluated with the field-measured deflection data of a three-
layer pavement structure. The optimization progress is shown in Figure 64. The Nelder–Mead 
method converged at an RMSRE of 2.346 percent. Note that although Nelder–Mead used more 
iterations, its heuristic algorithm took fewer function evaluations at each iteration. Thus, the 
number of function evaluations as a metric was used when comparing the various evaluated 
optimizers.  

Figure 64. Optimization Progress of the Nelder–Mead Method on Field-Measured Deflections of 
a Three-Layer Pavement Structure 

The recovered variables are shown in Table 22. The Nelder–Mead method has a similar problem 
to the Powell optimizer wherein the gamma value in the solution is positive, thus the solution is 
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not practical. However, unlike Powell’s method, the Nelder–Mead method does not support 
constrained optimizations, so it is impossible to limit it to only search solutions with negative 
gamma values. Different seed values were explored similar to what was discussed in Section 
5.5.3 to see if they led to negative gamma values. The first seed values diverged with RMSRE of 
over 300 percent and the second one converged with gamma of 0.1. Thus, the Nelder–Mead 
might not be a suitable solution for the target problem. 

Table 22. Optimization Performance of the Nelder–Mead Method on Field-Measured 
Deflections of a Three-Layer Pavement Structure 

Layer Variable 
Seed 
Value 

Recovered 
Value by 
Optimizer 

AC Sigmoidal Coefficients 

delta –0.9 –0.4969 
alpha 4.5 5.184 
betaPrime –0.7 –0.6342 
gamma –0.4 0.03316 

Modulus at 17 Hz (ksi) E1 356 695.5 

Base Modulus (ksi) E2 20 17.8 
Rayleigh Damping Coefficient βR BBase 0.003 0.003916 

Subgrade Modulus (ksi) E3 5 13.2 
Rayleigh Damping Coefficient βR BBase 0.003 0.003916 

 
5.7  BAYESIAN OPTIMIZATION METHOD 

As traditional optimization methods have been extensively evaluated ranging from Newton-
based methods to heuristic optimizers, the next step was to evaluate learning-based optimizers. 
The most fundamental difference between traditional and learning-based optimizers is that 
learning-based optimizers usually use information from all iterations, whereas traditional 
optimizers only examine what happens at current or recent iterations. For example, when making 
decisions at iteration 100, most learning-based optimizers would consider results from all 
previous 99 iterations, whereas the traditional optimizers like Newton’s method would only 
consider the gradients of current iteration. In other words, for Newton’s methods, as long as the 
current variables’ values and gradients do not change, the output would be the same regardless of 
the previous results. For learning-based optimizers, even if current variables’ values and 
gradients do not change, the output would be dependent on previous results. As a result, the 
learning-based optimizers are usually more robust but have more parameters, which are more 
challenging to implement and tune. 
 
The Bayesian optimization, a well-known learning-based algorithm, is based on a simple 
intuition: for target function 𝑓𝑓(𝑥𝑥) = 𝑦𝑦, suppose it is known that 𝑓𝑓(5) = 2, then for the 𝑥𝑥 near 5, 
its function value should be more likely near 2. This could be formulated from the probability 
perspective. For the unknown target function, it could be represented by a probability model 
where the known points (like the 𝑓𝑓(5) = 2 in the example) has 100 percent probability of 
yielding its corresponding results and the distanced points have little probability of yielding that 
result. In this way, the more known points there are, the more accurate the probability model will 
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be. Finally, when the probability model is accurate enough, the optimal points can be naturally 
inferred from the probability model. This is called surrogate optimization, in which a surrogate 
model is first fitted to the target function and then the optimization takes place on this surrogate 
model. 
 
Bayesian optimization is widely used in practice. For example, AlphaGo, Google’s ® chess-
playing artificial intelligence (AI) that has beaten top-rated human players, uses the Bayesian 
optimization. In this section, researchers presented data from their previous work, as shown in 
Figure 65 (Chen et al., 2018), to more intuitively show how Bayesian optimization works. 
 
In Figure 65, the target function 𝑓𝑓(𝜃𝜃) to be optimized is the red-dotted line, and it is unknown to 
the optimizer. The blue line is the surrogate model. The red circles on the red-dotted line are the 
previous known points, and the white circle is the current tested point. The light blue region is 
the probability distribution the optimizer concluded from the known points. As the figure shows, 
at first the Bayesian optimizer has little knowledge about the target function, so both the 
probability distribution and surrogate model are way off the target function. Along the training, 
the optimizer has more known points and converges the probability distribution to the true 
distribution as previously discussed. When the surrogate model is fitted to the target function at 
𝑡𝑡 = 5, the optimal point is also achieved. 
 

 

Figure 65. Bayesian Optimization Working on Example Function 

5.7.1  Algorithm 

On the algorithm level, Bayesian optimization is more challenging than it appears. The first 
challenge researchers need to address is the balance between exploitation and exploration, which 
is a long-time problem in the field of learning-based optimizers. Basically, the problem can be 
described in the following two questions:  
 

• Suppose tests are done about the target function and a point with relatively good results is 
found, should the point be fine-tuned hoping for better results (i.e., exploitation)?  

• Should the rest of the unknown space be explored to find another point with better results 
(i.e., exploration)? 
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For Bayesian optimization, three different strategies are used to handle the exploitation versus 
exploration tradeoff: Upper Confidence Bound (UCB), Expected Improvement (EI), and 
Probability of Improvement (POI). The UCB is a straightforward strategy that picks the 
maximal/minimal points from the probability distribution, which can be roughly understood as 
the edge of the light-blue-shaded region shown in Figure 65. The EI picks the next point with the 
highest expected improvement. The POI aims to pick the next point that has the highest 
probability of being better than best known point.  
 
The next question to consider is what surrogate model should be used to approximate the target 
function? The most commonly used one is the Gaussian process. It is based on the multivariate 
Gaussian distribution (or sometimes known as joint normal distribution), which is a high-
dimension extension of normal/gaussian distribution. For a scalar variable 𝑋𝑋, a normal 
distribution is defined as 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2), where 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation. For a 
more complicated high-dimensional case where 𝑋𝑋 is a vector, components of 𝑋𝑋 could have 
potential impact on each other, so their covariance must be formulated. Specifically, a 
multivariate Gaussian distribution of vector 𝑋𝑋 can be defined as 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝛴𝛴), where mean vector 
𝜇𝜇 = 𝐸𝐸(𝑋𝑋) and elements in covariance matrix 𝛴𝛴𝑖𝑖,𝑗𝑗 = 𝐸𝐸�(𝑋𝑋𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑋𝑋𝑗𝑗 − 𝜇𝜇𝑗𝑗��. For Bayesian 
optimization, the target is to predict the distribution of the next point 𝑥𝑥∗ with the knowledge of 
all previous known points 𝑥𝑥1 … 𝑥𝑥𝑡𝑡 and their results 𝑓𝑓1 … 𝑓𝑓𝑡𝑡. For conciseness, in the following 
discussions, known points will be referred to as 𝑥𝑥 and their corresponding results as 𝑓𝑓. To predict 
next point 𝑥𝑥∗, the joint distribution of 𝑥𝑥 and 𝑥𝑥∗ is written as: 
 

� 𝐟𝐟𝐟𝐟∗
�~𝑁𝑁 ��

𝝁𝝁
𝝁𝝁∗� , �

Σ Σ∗
Σ∗T Σ∗∗

�� (112) 

 
Using the formula for conditioning a joint Gaussian distribution gives: 
 

f∗ ∣ f ~ 𝑁𝑁(𝜇𝜇∗ +  𝛴𝛴∗T𝛴𝛴−1(f − 𝜇𝜇),𝛴𝛴∗∗ − 𝛴𝛴∗T𝛴𝛴−1𝛴𝛴∗) (113) 
 
Note that in the above equation, 𝑓𝑓, 𝜇𝜇,∑ are already known and 𝜇𝜇∗ can be assumed to be same as 
𝜇𝜇 since the target problem is the same. Thus, the only unknown items are the covariance terms 
∑∗ and ∑∗∗. In other words, if there was a way to fit/model the covariance, the problem would be 
solved. Recall the basic intuition discussed earlier: closer inputs should yield similar outputs, and 
distanced inputs are likely to give different outputs. That means the covariance could be solely 
modelled based on inputs. The numerical models used to approximate the covariance are called 
kernel functions 𝑘𝑘. In practice, there are many limitations on the choice of kernel functions, but 
they are beyond the scope of this report. The most commonly used kernel function is the radial-
basis function kernel (also known as squared-exponential kernel/Gaussian kernel): 
 

𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp �−𝑑𝑑�𝑥𝑥𝑖𝑖,   𝑥𝑥𝑗𝑗�
2

2𝑙𝑙2
� (114) 

 
where the 𝑑𝑑 is the Euclidean distance and 𝑙𝑙 is a parameter. 
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However, this kernel function is often too simple to fit the real covariance in practice. Thus, one 
of its generalization forms called Matérn kernel is often used instead: 
 

𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 1
Γ(𝑣𝑣)2𝑣𝑣−1

 �√2𝑣𝑣
𝑙𝑙
𝑑𝑑�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗��

𝑣𝑣

 𝐾𝐾𝑣𝑣 �
√2𝑣𝑣
𝑙𝑙
𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�� (115) 

 
where Γ is the gamma function, 𝐾𝐾𝑣𝑣 is the modified Bessel function of the second kind, and 𝑙𝑙 and 
ν are positive parameters. Note that when 𝑣𝑣 goes to infinite, the Matérn kernel degenerates to the 
radial-basis function kernel. In the actual implementation, all parameters of kernel functions such 
as 𝑙𝑙 and 𝑣𝑣 are automatically inferred from the known points. 
 
5.7.2  Evaluation 

The Bayesian optimizer is implemented and evaluated on the measured deflection of actual 
three-layer pavement structure. Different from all previous traditional optimizers, the Bayesian 
optimizer cannot work with seed values. Rather, it needs a range (upper/lower bounds) of every 
single variable. Researchers constructed a native range from the seed values, as shown in 
Table 23. Note that the seed values in Table 23 are for informational purposes only and are not 
given to the optimizer. 

Table 23. Initial Range and Optimization Performance of Bayesian Optimizer on Field-Measured 
Deflections of a Three-Layer Pavement Structure  

Layer Variable 

Seed 
Value 
(Not 

Used) 
Lower 
Bound 

Upper 
Bound 

Recovered 
Value by 
Optimizer 

AC 

Sigmoidal 
coefficients 

delta –0.9 –1.8 0 –1.4617 
alpha 4.5 0 9 5.4675 
betaPrime –0.7 –1.4 0 –1.2872 
gamma –0.4 –0.8 0 -0.053885 

Modulus at 17 Hz 
(ksi) E1 356 0.016 31622 764.4 

Base 
Modulus (ksi) E2 20 1 40 33.6 
Rayleigh Damping 
Coefficient βR BBase 0.003 0 0.006 0.0043194 

Subgrade 
Modulus (ksi) E3 5 1 10 9.9 
Rayleigh Damping 
Coefficient βR BBase 0.003 0 0.006 0.0043194 

 
The detailed optimization progress is shown in Figure 66. The Bayesian optimizer took around 
450 function evaluations to optimize the RMSRE to 6.74 percent. This was not a good 
convergence compared with previous optimizers. However, it should be noted that all previous 
optimizers used seed values while the Bayesian did not. This means the Bayesian could have an 
advantage if seed values are not well-tuned or not given. Researchers plan to further evaluate this 
scenario. 
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Figure 66. Optimization Progress of Bayesian Optimizer on Field-Measured Deflections of a 
Three-Layer Pavement Structure  

The Bayesian optimizer was further evaluated on the synthetic three-layer pavement system. 
Similar to the setting of previous evaluation, the seed values were not used by the Bayesian 
optimizer, and these seeds were converted to the range instead as shown in Table 24. The 
optimization progress is shown in Figure 67, where the Bayesian converged to an RMSRE of 
5 percent within around 60 evaluations and stayed at a similar level until the end. The final 
RMSRE was 3.85 percent. These results suggest that the Bayesian optimizer can quickly 
optimize the variables to a reasonably good level but fail to find the exact values for variables, 
which is a similar pattern to what was observed in the field-measured system evaluation.  
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Table 24. Initial Range and Optimization Performance of Bayesian Optimizer on a Synthetic 
Three-Layer Pavement Structure 

Layer Variable 
Target 
Value 

Seed 
Value 
(Not 

Used) 
Lower 
Bound 

Upper 
Bound 

Recovered 
Value by 
Optimizer 

AC 

Sigmoidal 
coefficients 

delta –0.134 –1 –2 0 –1.99115 
alpha 3.703 4.65 0 9.3 4.96230 

betaPrime –
0.465118 

–
0.265118 

–
0.530236 0 –0.475363 

gamma –0.548 –0.65 –1.3 0 –0.238817 
Modulus at 
17 Hz (ksi) E1 469 286 0.01 44668 25.0 

Base 

Modulus 
(ksi) E2 40 50 0.001 100 66.8 

Rayleigh 
Damping 
Coefficient 
βR 

BBase 0.002 0.003 0 0.006 0.00340631 

Subgrade 

Modulus 
(ksi) E3 5 7 0.001 14 5.7 

Rayleigh 
Damping 
Coefficient 
βR 

BSG 0.002 0.001 0 0.002 0.00180675 

 

 

Figure 67. Optimization Progress of Bayesian Optimizer on a Synthetic Three-Layer Pavement 
Structure  
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5.7.3  Parametric Study 

As discussed in Section 5.7.1, the choice of exploitation versus exploration strategies and its 
trade-offs could have a potential impact on the performance of the Bayesian optimizer. Thus, a 
parametric study was overperformed using different strategies and kappa values. Kappa values 
control how much the Bayesian optimizer would prefer exploration over exploitation. 
 
The strategies tested were UCB, EI, and POI, and the kappa values tested were 1.0, 2.5, 5.0, and 
10. The optimization progresses are shown in Figure 68, and the final results are shown in Table 
25. The results indicate that while different strategies and kappa values do make the optimization 
different, they do not significantly change the final RMSRE.  
 

 

Figure 68. Optimization Progress of Parametric Study of the Bayesian Optimizer on Field-
Measured Deflections of a Three-Layer Pavement Structure   

Table 25. Parametric Study of the Bayesian Optimizer’s Final RMSRE on Field-Measured 
Deflections of a Three-Layer Pavement Structure  

Kappa UCB EI POI 
2.5 8.094% 8.094% 8.094% 
1.0 8.094%   
5.0 8.094%   
10 8.501%   

 
Notably, these results are different from those in Section 5.7.2, which could be due to different 
random seed values. Most learning-based algorithms would give different results across different 
runs due to randomness, even if the target problem, the data, and the parameters were the same. 
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5.8  LEVENBERG–MARQUARDT ALGORITHM 

In this effort, another family of optimization algorithms, the least-squares algorithms, was also 
evaluated. The term least-squares refers to the approach of minimizing the difference between 
the observed values and the predicted values by each individual equation of the target problem. 
This kind of approach naturally aligns with the vector problem definition (as discussed in Section 
5.2.1), allowing for a potentially faster convergence. 
 
The Levenberg-Marquardt (Moré, 1978) algorithm is a popular least-squares algorithm. It can be 
described as a combination of Newton’s method and the gradient descent method. It is proposed 
to deal with Newton’s method’s drawbacks: the sensitivity to initial point (seed) and the 
requirement that Jacobian matrix must be invertible. Specifically, the Levenberg-Marquardt 
algorithm uses an adaptive parameter to control the interpolation between Newton’s method and 
the gradient descent method. It acts more like a gradient descent method when the parameters are 
far from their optimal values and acts more like the Gauss-Newton method when the parameters 
are close to their optimal values. 
 
5.8.1  Algorithm 

The objective is to find a 𝑝𝑝, where 𝑓𝑓(𝑝𝑝) = 𝑥𝑥 and 𝑥𝑥 is the target value. Similar to Section 5.3.1, 
the Levenberg-Marquardt algorithm first uses the Taylor expansion: 

 
𝑓𝑓�p + 𝛿𝛿p� ≈ 𝑓𝑓(p) + J𝛿𝛿p (116) 

 
Here the 𝐽𝐽 is the Jacobian matrix. Then: 
 

�𝐱𝐱 − 𝑓𝑓(𝐩𝐩 + 𝛿𝛿𝐩𝐩,𝑘𝑘)� ≈ �𝐱𝐱 − 𝑓𝑓(𝐩𝐩) − 𝐉𝐉𝛿𝛿𝐩𝐩,𝐤𝐤� = �𝜖𝜖𝑘𝑘 − 𝐉𝐉𝛿𝛿𝐩𝐩,𝐤𝐤� (117) 
 
The objective is to make 𝑓𝑓(𝑝𝑝) as close to 𝑥𝑥 as possible. Thus, minimizing the above equation 
gives: 
 

(𝐉𝐉𝑇𝑇𝐉𝐉)𝛿𝛿p = 𝐉𝐉𝑇𝑇𝜖𝜖𝑘𝑘 (118) 
 

Levenberg’s contribution is to replace the above equation by a “damped version”: 
 

[𝜇𝜇𝐈𝐈 + (𝐉𝐉𝑇𝑇𝐉𝐉)]𝛿𝛿p = 𝐉𝐉𝑇𝑇𝜖𝜖𝑘𝑘 (119) 
 
The two terms on the left side of equation 119 give the solution of gradient descent (William, 
1992) and Newton’s methods (Björck, 1996), respectively. Thus, the parameter 𝜇𝜇 controls 
whether the solution is closer to gradient descent or Newton. For adaptive control, 𝜇𝜇 is adjusted 
at each iteration based on the reduction of distance between 𝑓𝑓(𝑝𝑝) and 𝑥𝑥. If the reduction is large, 
𝜇𝜇 is decreased, which makes the solution closer to Newton’s method and vice versa. In this way, 
the Levenberg-Marquardt algorithm takes advantage of the robustness of gradient descent when 
the current value is away from the optimal value and uses the fast and good convergence of the 
Newton’s method as the value approaches the optimal. 
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5.8.2  Evaluation 

Researchers evaluated the Levenberg-Marquardt algorithm with both the three-layer synthetic 
and field-measured FWD data, respectively. The Jacobian matrix is approximated by finite 
difference, as described in Section 5.3.3.  
 
As shown in Figure 69, the Levenberg-Marquardt algorithm achieves a fast convergence on the 
three-layer synthetic structure. It uses less than 50 function evaluations to reach RMSRE of 
1 percent and 85 evaluations to reach 0.1 percent RSMRE. The final RMSRE is 0.085 percent 
and the corresponding variables are shown in Table 26. Notably, the sigmoidal coefficients 
recovered by the Levenberg-Marquardt algorithm are more similar to the target values than 
previous optimization methods. 
 

 

Figure 69. Optimization Progress of Levenberg-Marquardt on Deflections of Synthetic Three-
Layer Pavement Structure 

Table 26. Optimization Performance of Levenberg-Marquardt in the Synthetic Three-Layer 
Pavement Structure 

Layer Variable 
Target 
Value 

Seed 
Value 

Recovered 
Value by 
Optimizer 

AC 

Sigmoidal coefficients  Delta –0.134 –1 -0.185169 
Sigmoidal coefficients  Alpha 3.703 4.65 3.70327 

Sigmoidal coefficients  betaPrime –0.465118 –
0.265118 –0.622483 

Sigmoidal coefficients 
gamma Gamma –0.548 –0.65 –0.490351 

Modulus at 17 Hz (ksi)  E1 469 286 475.8 
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Layer Variable 
Target 
Value 

Seed 
Value 

Recovered 
Value by 
Optimizer 

Base 
Modulus (ksi)  E2 40 50 39.7 
Rayleigh Damping 
Coefficient βR  BBase 0.002 0.003 0.00213204 

Subgrade 
Modulus (ksi)  E3 5 7 5.0 
Rayleigh Damping 
Coefficient βR   BSG 0.002 0.001 0.00202223 

 
For the field-measured FWD data, the Levenberg-Marquardt algorithm still achieved a relatively 
fast convergence by using less than 30 function evaluations to reduce the RMSRE to less than 1 
percent. The optimization progress is shown in Figure 70 with a final RMSRE of 0.67 percent. 
The comparison between Levenberg-Marquardt and other optimizers is discussed in Section 
5.14.  
 

 

Figure 70. Optimization Progress of Levenberg-Marquardt on Deflections of Field-Measured 
Three-Layer Pavement Structure  
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Table 27. Optimization Performance of Levenberg-Marquardt on Field-Measured Deflections of 
a Three-Layer Pavement Structure 

Layer Variable Seed Value 

Recovered 
Value by 
Optimizer 

AC 

Sigmoidal coefficients  Delta –0.9 –0.985555 
Sigmoidal coefficients  Alpha 4.5 4.40188 
Sigmoidal coefficients  betaPrime –0.7 –0.942652 
Sigmoidal coefficients  Gamma –0.4 –0.644878 
Modulus at 17 Hz (ksi)  E1 356 571.3 

Base 
Modulus (ksi)  E2 20 41.9 
Rayleigh Damping 
Coefficient βR   BBase 0.003 0.00228940 

Subgrade 
Modulus (ksi)  E3 5 13.1 
Rayleigh Damping 
Coefficient βR  BBase 0.003 0.00228940 

 
Levenberg-Marquardt uses both Newton’s and gradient descent methods, so, theoretically, it 
takes twice as many function evaluations. Yet the results show that the number of evaluations is 
comparable to the original Newton’s method. This is because the caching mechanism 
implemented in the middle layer of the optimization framework (described in Section 5.1) helped 
to avoid all the repeated function evaluations during optimization. With the help of this 
mechanism, the Levenberg-Marquardt algorithm has shown promising results in terms of both 
the speed of convergence and the good final RMSRE. 
 
5.9  TRUST REGION ALGORITHM 

Inspired by the promising results of the Levenberg-Marquardt algorithm, researchers followed up 
with other least-squares algorithms. The trust region algorithm is another popular least-squares 
algorithm. Its concept is as follows: there are multiple ways to approximate the target function 
𝑓𝑓() at a given point 𝑥𝑥 (e.g., Taylor expansion). These approximations are most accurate around 
the point 𝑥𝑥 but not elsewhere. Thus, there is a trust region Δ around 𝑥𝑥, where one can safely trust 
the approximation and perform optimization on it. The trust region is like a dynamic boundary 
on the optimization. With such a boundary, the optimization is more stable and can avoid 
numerical problems like those observed in Section 5.4.2. 
 
5.9.1  Algorithm 

Let the target function be 𝐹𝐹 and the approximated function be 𝑓𝑓. 
 

𝑔𝑔 = 𝐹𝐹′(𝑥𝑥),  𝐻𝐻 = 𝐹𝐹′′(𝑥𝑥)  (120) 
 
By the Taylor expansion, 𝐹𝐹 can be approximated as: 
 

𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥𝑇𝑇𝐻𝐻𝐻𝐻 + 𝑥𝑥𝑇𝑇𝑔𝑔  (121) 
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Optimizing the approximated function gives: 
 

𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓(𝑥𝑥),𝑥𝑥 < Δ)  (122) 
 
where Δ is the trust region. If 𝐹𝐹(𝑥𝑥 + 𝑠𝑠) < 𝐹𝐹(𝑥𝑥), it means the current trust region is valid: 𝑥𝑥 =
𝑥𝑥 + 𝑠𝑠, increase Δ; or, it means the current trust region is too large, then decrease Δ. On the 
implementation level, there are some improvements. For example, instead of using a scaler as Δ, 
one could use the shape of the constraints as the shape of trust region. This is called the trust 
region reflective algorithm. It allows the users to have finer control over the trust region. 
 
5.9.2  Evaluation 

The trust region algorithm was evaluated on both the synthetic and field-measured, three-layer 
FWD data. On the synthetic pavement structure, the trust region algorithm used about 45 
function evaluations to reach RMSRE of 1 percent and 120 evaluations to reach RMSRE below 
0.1 percent, as shown in Figure 71. The recovered variables are shown in Table 28 and the final 
RMSRE is 0.098 percent. The comparison of trust region and other optimizers is in Section 5.14. 
 

 

Figure 71. Optimization Progress of Trust Region on Deflections of Synthetic Three-Layer 
Pavement Structure  
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Table 28. Optimization Performance of Trust Region in the Synthetic Three-Layer  
Pavement Structure 

Layer Variable 
Target 
Value 

Seed 
Value 

Recovered 
Value by 
Optimizer 

AC 

Sigmoidal coefficients  Delta −0.134 −1 0.953666 
Sigmoidal coefficients  Alpha 3.703 4.65 2.72996 
Sigmoidal coefficients  betaPrime −0.465118 −0.265118 0.0806200 
Sigmoidal coefficients  Gamma −0.548 −0.65 −0.503267 
Modulus at 17 Hz (ksi)  E1 469 286 476.0 

Base 
Modulus (ksi)  E2 40 50 39.7 
Rayleigh Damping 
Coefficient βR  BBase 0.002 0.003 0.00214440 

Subgrade 
Modulus (ksi)  E3 5 7 5.0 
Rayleigh Damping 
Coefficient βR  BSG 0.002 0.001 0.00200754 

 
The convergence pattern was similar for the field-measured FWD data. The trust region 
algorithm used about 35 evaluations to reach RMSRE of 1 percent. The final RMSRE was 
0.6938 percent, which was among the top-performing optimizers evaluated. The details are 
presented in Figure 72 and Table 29. 
 

 

Figure 72. Optimization Progress of Trust Region on Deflections of Field-Measured Three-Layer 
Pavement Structure  
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Table 29. Optimization Performance of Trust Region on Field Measured Deflections of a Three-
Layer Pavement Structure 

Layer Variable Seed Value 
Recovered Value 

by Optimizer 

AC 

Sigmoidal coefficients  Delta –0.9 –0.422799 
Sigmoidal coefficients  Alpha 4.5 5.41625 
Sigmoidal coefficients  betaPrime –0.7 –0.0632498 
Sigmoidal coefficients  Gamma –0.4 –0.227358 
Modulus at 17 Hz (ksi)  E1 356 556.2 

Base 
Modulus (ksi)  E2 20 40 
Rayleigh Damping 
Coefficient βR  BBase 0.003 0.00237904 

Subgrade 
Modulus  E3 5 13 
Rayleigh Damping 
Coefficient βR  BBase 0.003 0.00237904 

 
5.10  DOGLEG ALGORITHM 

The Levenberg–Marquardt algorithm can be considered an enhancement to Newton’s method by 
including the gradient descent algorithm to improve its robustness and convergence speed. The 
trust region algorithm can be considered an enhancement to Newton’s method by making its step 
size adaptive. A natural question is whether it is possible to combine the two improvements. This 
combination is referred to as Powell’s dogleg method. It combines the Newton’s method and the 
gradient descent as the Levenberg–Marquardt algorithm and then limits the solution by the trust 
region. 
 
5.10.1  Algorithm 

The dogleg algorithm is a heuristic algorithm, as shown in Figure 73. If the current point is 𝑥𝑥, the 
algorithm needs to decide the next point 𝑥𝑥𝑡𝑡+1: 
 

• Step 1—Get next point 𝑥𝑥𝑔𝑔𝑔𝑔 from Gauss-Newton method. 
• Step 2—If 𝑥𝑥𝑔𝑔𝑔𝑔 is within trust region Δ: 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑔𝑔𝑔𝑔. 
• Step 3—If 𝑥𝑥𝑔𝑔𝑔𝑔 is outside trust region Δ: get next point 𝑥𝑥𝑠𝑠𝑠𝑠 from gradient descent method. 
• Step 4—If 𝑥𝑥𝑠𝑠𝑠𝑠 is outside trust region Δ: cap 𝑥𝑥𝑠𝑠𝑠𝑠 to the boundary of Δ; 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
• Step 5—If 𝑥𝑥𝑠𝑠𝑠𝑠 is within trust region Δ: 𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑔𝑔𝑔𝑔 + 𝑥𝑥𝑠𝑠𝑠𝑠. Cap 𝑥𝑥𝑘𝑘 to the boundary of Δ: 

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑘𝑘_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
 
In this way, the shape of the actual optimization step is like a dogleg hole in golf; hence, the 
algorithm’s name. 
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Figure 73. How Dogleg Algorithm Works (Lourakis & Argyros, 2005) 

5.10.2  Evaluation 

Similar to previous evaluations, the dogleg algorithm was evaluated with the synthetic and field-
measured, three-layer system FWD data. On the synthetic data, the dogleg algorithm shows a 
fast convergence of less than 75 function evaluations to reach the RMSRE of 0.1 percent, as 
shown in Figure 74. The final RMSRE is 0.055 percent, which was the best result among all 
optimizers evaluated so far. The comparison of the dogleg and other optimizers is discussed in 
Section 5.14. The recovered variables are shown in Table 30. 
 

 

Figure 74. Optimization Progress of the Dogleg Algorithm on Deflections of Synthetic Three-
Layer Pavement Structure    

  



 

107 

Table 30. Optimization Performance of the Dogleg in the Synthetic Three-Layer Pavement 
Structure 

Layer Variable 
Target 
Value 

Seed 
Value 

Recovered 
Value by 
Optimizer 

AC 

Sigmoidal coefficients  Delta –0.134 –1 0.242861 
Sigmoidal coefficients  Alpha 3.703 4.65 3.3323 

Sigmoidal coefficients  betaPrime –
0.465118 –0.265118 –0.211929 

Sigmoidal coefficients  Gamma –0.548 –0.65 –0.614591 
Modulus at 17 Hz (ksi)  E1 – – 454.9 

Base 
Modulus (ksi)   E2 40 50 40.3 
Rayleigh Damping 
Coefficient βR  BBase 0.002 0.003 0.00190876 

Subgrade 
Modulus  E3 5 7 4,9 
Rayleigh Damping 
Coefficient βR  BSG 0.002 0.001 0.00198551 

 
For the field-measured data, the dogleg algorithm took about 30 function evaluations to achieve 
RMSRE of 1 percent, and the final RMSRE was 0.6763 percent. The optimization progress is 
shown in Figure 75, and the recovered results are shown in Table 31. 
 

 

Figure 75. Optimization Progress of the Dogleg Algorithm on Deflections of Field-Measured 
Three-Layer Pavement Structure 
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Table 31. Optimization Performance of the Dogleg Algorithm on Field-Measured Deflections of 
a Three-Layer Pavement Structure 

Layer Variable Seed Value 

Recovered 
Value by 
Optimizer 

AC 

Sigmoidal coefficients delta –0.9 –0.369329
Sigmoidal coefficients alpha 4.5 5.54109 
Sigmoidal coefficients betaPrime –0.7 0.0133356 
Sigmoidal coefficients gamma –0.4 –0.214682
Modulus at 17 Hz (ksi) E1 356 558.2 

Base 
Modulus (ksi)  E2 20 40 
Rayleigh Damping 
Coefficient βR  BBase 0.003 0.00234077 

Subgrade 
Modulus E3 5 13 
Rayleigh Damping 
Coefficient βR  BBase 0.003 0.00234077 

Similar to the Levenberg–Marquardt algorithm, the theoretical number of function evaluations 
needed was higher than the ones shown in Table 31. The caching mechanism reduced the 
number of function evaluations. 

5.11  KALMAN FILTER 

The Kalman filter is a widely used algorithm that estimates system states under noisy 
measurements and external disturbance. The key idea is to fit a joint probability distribution over 
the variables for each timeframe. This algorithm is widely used in industrial controllers such as 
guidance, navigation, and control of vehicles and aircraft. Several related works (Choi et al., 
2010; Wu et al., 2021) proposed the use of the Kalman filter to estimate the layer modulus in 
backcalculation of AC structures. The challenge is that the target of this project is to estimate a 
wide range of variables including sigmoidal coefficients and Rayleigh damping coefficients 
instead of just the layer modulus. Thus, an enhanced implementation of the Kalman Filter was 
employed in this project to deal with the multidimensional parameters space-of-target problem. 

5.11.1  Problem Definition 

The Kalman filter estimates the system state at the current time step based on three factors: the 
previous system state, the current measurements (also called control signals), and noise: 

(123) 

where F is the state transition matrix, B is the control-input matrix, and u is the measurements, w 
is the noise assumed to be from a multidimensional zero-mean Gaussian distribution with 
covariance Q. The Kalman filter also assumes that current measurements are related to current 
system state by:  

xk = Fxk-1 + Buk-1 + wk-1
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𝑧𝑧𝑘𝑘 = 𝐻𝐻𝒙𝒙𝑘𝑘 + 𝒗𝒗𝑘𝑘  (124) 
 
where H is the measurement matrix, and v is the measurement noise that is also assumed to be 
from a multidimensional zero-mean Gaussian distribution with covariance R. Under this problem 
setting, any system in the Kalman filter could by defined by the five matrices F, B, H, Q, and R. 

 
5.11.2  Algorithm 

The Kalman filter can be seen as a two-stage algorithm. It first predicts the system state x and 
error covariance P based on information from the previous step: 
 

𝑥𝑥�𝑘𝑘− = 𝐹𝐹𝑥𝑥�𝑘𝑘−1+ + 𝐵𝐵𝐵𝐵𝑘𝑘−1 (125) 
 

𝑃𝑃𝑘𝑘− = 𝐹𝐹𝐹𝐹𝑘𝑘−1+  𝐹𝐹𝑇𝑇 + 𝑄𝑄 (126) 
 
The subscripts – and + indicate “predicted” and “refined” variables, respectively. The Kalman 
filter algorithm refines these predicted values based on the collected measurement information. 
 

𝒚𝒚�𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑥𝑥�𝑘𝑘− (127) 
 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇(𝑅𝑅 + 𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇)−1 (128) 
 

𝒙𝒙�𝑘𝑘+ = 𝒙𝒙�𝑘𝑘− + 𝐾𝐾𝑘𝑘𝒚𝒚� (129) 
 

𝑃𝑃𝑘𝑘+ = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘− (130) 
 
where y is the difference between predicted and actual measurements, called measurement 
residual. K is Kalman gain, which serves as a weight the algorithm uses to balance between the 
measurements and system state estimations. Figure 76 shows a high-level workflow of the 
described Kalman filter algorithm. 
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Figure 76. The Kalman Filter Workflow Showing how the Algorithm Estimates Current System 
States  

The Kalman filter algorithm can be more intuitively understood by comparing it to a Newton’s 
method algorithm with a finite difference and a fixed step size of 1. In that scenario, the 
measurement residual is similar to the derivative, and the system-state estimation update can be 
considered a damped version of the Newton’s method updated equation. 

 
5.11.3  Problem Formulation 

The Kalman filter algorithm could not be directly applied to the target problem as it holds several 
assumptions that are not applicable to the backcalculation problem. Thus, the Kalman filter was 
tailored to fit the target problem. 
 
The first challenge was to formulate the backcalculation problem into a form that the Kalman 
filter could work on. The Kalman filter expects a system with varying states and external 
disturbances, yet the target backcalculation problem is static. Thus, variables were used as the 
system state, and the parameters were used as the measurement, as suggested by the related 
work. This seemed reasonable because the Kalman filter takes the current shape of deflections 
(i.e., the parameters) as the observation and then uses it to update its estimation to the 
backcalculated variables. However, this approach did not work in practice, and all optimization 
processes were either diverged or stuck at the starting point even after non-trivial 
engineering/tuning effort. Based on related work research, researchers realized that the Kalman 
filter expects the current measurement to be correlated with target system states rather than 
current estimated states. For a specific backcalculation problem, the target variables are always 
fixed. That means the Kalman filter expects the same measurement throughout the optimization 
process. Yet that leads to a critical problem: if the only inputs to Kalman filter are the same 
measurement and a static Gaussian noise, then it will not be able to do any optimization since it 
is not getting any feedback of its estimations. 
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5.11.4  Extended Kalman Filter 

Given the analysis discussed in Section 5.11.3, researchers confirmed the reason the optimization 
failed. Yet the expectation of correlation between observation and target is a fundamental part of 
the Kalman filter. To have the Kalman filter work with the backcalculation problem, researchers 
chose to use the Extended Kalman Filter (EKF) as a workaround. The key difference between the 
EKF and the Kalman Filter is that the Kalman Filter assumes there exists a static (user-defined) 
correlation H between current measurement and target system states (see 5.11.2), whereas the 
EKF approximates this measurement matrix H by using Jacobian matrix. Thus, the EKF can 
work with the backcalculation problem even if the measurements are static. Specifically, 
researchers set the state transition matrix F to identity matrix to reflect the static nature of the 
backcalculation problem. Choi,Wu, Pestana, and Harvey (2010) suggests some values for the 
uncertainty matrices Q and R, but researchers evaluated those values and found that they did not 
work well in practice. Thus, these matrices are set to identity matrices since the backcalculation 
problem is deterministic and, thus, there is no uncertainty. In each step, the parameters of the 
target variables/measured deflections will be fed as the measurement z. In the meantime, the 
Hessian matrix of the current estimation is computed and used as the measurement matrix H.  
 
5.11.5  Evaluation 

With the EKF algorithm applied and using the Hessian matrix as measurement matrix H, the 
performance of the optimizer was evaluated on the synthetic three-layer pavement structure used 
in previous evaluations. The optimization process is shown in Figure 77. The EKF was able to 
get a final RMSRE of 0.291 percent with about 100 function evaluations. Although the EKF 
showed convergence speeds and final RMSRE comparable to other optimizers, it seemed to be 
more sensitive to the seed values. This could be a potential disadvantage of this optimizer. 
 

 

Figure 77. Optimization Progress of the EKF on Deflections of Synthetic Three-Layer  
Pavement Structure 
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Table 32. Optimization Performance of the EKF on Synthetic Deflections of a Three-Layer 
Pavement Structure 

Layer Variable 
Target 
Value Seed Value 

Recovered 
Value by 
Optimizer 

AC 

Sigmoidal Coefficients  Delta –0.134 –1 –0.927409 
Sigmoidal Coefficients  Alpha 3.703 4.65 4.761513 
Sigmoidal Coefficients  betaPrime –0.465118 –0.265118 –0.277922 
Sigmoidal Coefficients  Gamma –0.548 –0.65 –0.631047 
Modulus at 17 Hz (ksi)  E1 469 286 401.6 

Base 
Modulus (ksi)  E2 40 50,000 41.3 
Rayleigh Damping 
Coefficient βR  BBase 0.002 0.003 0.00163970 

Subgrade 
Modulus  E3 5 7 4.9 
Rayleigh Damping 
Coefficient βR  BSG 0.002 0.001 0.00187731 

 
In terms of variables recovery, the EKF performed similarly to other derivative-based optimizers. 
It was able to recover the modulus and the Rayleigh damping coefficient reasonably well but 
missed the AC sigmoidal coefficients. It should be noted that this project is the first study that 
successfully applied the Kalman Filter to such a large group of variables. Previous work in this 
line of research only applied Kalman filter to modulus (Choi et al., 2010). 
 
5.12  REINFORCEMENT LEARNING OPTIMIZER 

Reinforcement Learning is a powerful tool for general optimization problems that dates back to 
the 1990s. In recent years, researchers combined classical reinforcement learning with the neural 
network into an even more powerful approach called deep-reinforcement learning, which is the 
technique being evaluated for the target problem (Sutton & Barto, 2018; Jaeger & Geiger, 2023). 
 
The core concept of reinforcement learning treats the algorithm itself as an agent that interacts 
with the environment with certain actions and learns from the consequences of those actions. 
Specifically, reinforcement learning algorithms usually require three types of information:  
 

• “state”—the description of all information about the current environment  
• “action”—the available actions the algorithm can take  
• “reward”—a quantitative description of the consequences of taking the action in current 

state  
 
The workflow is straightforward: for the current state, take the action that maximizes expected 
rewards. 
 
The advantages of reinforcement learning include its ability to tackle unknown problems 
iteratively by learning and its high flexibility as the state/action/reward are all user-defined. 
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Reinforcement learning has had notable achievements in several challenging real-world 
scenarios, such as recently winning against a top-rated human player in the game, “Go.” 
 
There are different types of reinforcement learning algorithms. They can be roughly categorized 
into value-based, policy-based, actor-critic reinforcement learning algorithms, and others. Value-
based algorithms, such as the Q-Learning function, try to accurately predict the value (reward) of 
each action in current situation (state). Policy-based algorithms try to iteratively improve an 
implicit policy (usually a neural network) so it could directly decide the next action to take 
without the need to know the exact value. Actor-critic algorithms are similar to a combination of 
the former two approaches. They work by having a policy based on predicted values and then 
update both the policy and the prediction of values in each step. 
 
5.12.1  Problem Definition 

In this study, the popular Q-Learning algorithm was first selected as the optimizer for the target 
problem. As previously discussed, all “states,” “actions,” and “rewards” need to be defined so 
the Q-Learning algorithm can work.  
 
There are several possible ways to define the “state,” which is the description of current problem. 
First, an extensive description of the pavement structure can be used as the state. For example, a 
state can be described as a predefined, long vector covering each layer in the pavement structure 
and all the parameters. This approach would make the algorithm universal as long as the target 
problem could be described. However, this would make the state space infinitely large (number 
of possible values to the power of vector length). Thus, the algorithm would take orders of 
magnitude more data to train. An alternative way to define a state is to set it as empty. This is 
feasible because the target pavement structure is static for a certain optimization. In this case, 
there is no need for the algorithm to know the details of this pavement structure, and it only 
needs to know that the pavement structure is going to be consistent across the optimization. This 
significantly reduces the training time of the algorithm and makes the training much smoother as 
all the data are based on the same pavement structure. This also makes sure the algorithm is able 
to handle every optimization problem, as there is no need to fit the description of the pavement 
structure into the predefined vector. The disadvantage of this approach is it needs to start 
optimization from scratch every time as it cannot use the data from previous runs. 
 
It is infeasible to directly use the variables as “actions,” which are possible actions the algorithm 
could take, for two reasons. First, the actions are discrete, whereas the target problem needs very 
fine-grained, continuous variables. Second, there could be many variables, and the number of 
combinations is large. To get around this issue, in this study, the actions were set to be the 
portion of change based on current variables. For example, the algorithm picks from the list (-5 
percent, -1 percent, 0, +1 percent, +5 percent) and then applies it to the current variable. In this 
way, the actions are fixed so the algorithm will not be confused, and it enables arbitrary fine-
grained change to the variables when multiple changes are combined together (e.g., two actions 
combined together 0.99*1.01 = 0.9999 could reduce the variable by 0.01 percent). The only 
disadvantage is that a positive variable cannot be turned into a negative one and vice versa. This 
means the algorithm requires seed values for the variables. 
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The “reward” part is very straightforward as the RMSRE metric is a natural inverse reward. 
Researchers use the -1*RMSRE as the reward. Thus, the algorithm aims to reduce RMSRE when 
pursuing larger rewards. 
 
5.12.2  Algorithm 

With the state/action/reward being properly defined, the algorithm of Q-Learning can be 
summarized as follows: 
 

• Initialization: neural network N. 
• Step 1: Fetch the current state s. 
• Step 2: For every possible action a, get the predicted value N(s,a) from neural network. 
• Step 3: Decide the next action a, based on predicted values. 
• Step 4: Execute action a, and observe the consequences to get reward r. 
• Step 5: Add the actual value V(s,a) = r to the training set of neural network N. 
• Step 6: Train the neural network. Go to step 1. 

 
Step 3 is a key component. The way algorithm decides its next action, called policy, needs to be 
chosen carefully. A native, or greedy, approach is to always choose the action with the best 
predicted values. Because the problem definition uses a static state, the greedy approach would 
result in the optimizer choosing the same action throughout the optimization. On the other hand, 
if the action is chosen randomly, then the optimization degenerates to random search, which is 
inefficient given the large search space the target problem has, as discussed previously. Thus, a 
good policy needs to consider the predicted values while having enough randomness. This is 
called the exploit-exploration balance, which is a common challenge for reinforcement learning 
algorithms. There are several approaches to achieve this balance. For example, the algorithm 
could randomly choose from the top N best actions so that balance is achieved. Also, the 
algorithm could assign a certain probability to every action based on their predicted value and 
then sample one action based on the assigned probability, which is called the Boltzmann 
distribution. Neither of these methods were selected in this study because they both introduce 
extra hyperparameters that require tuning effort, which limits the generalization and robustness 
of the optimizer. The final policy for the reinforcement learning optimizer was set as gradient 
descent with random start. In this policy, the optimizer randomly starts from an action and then 
repeatedly tries to move to another action in the neighborhood if that action has better predicted 
values. This policy has all the merits discussed. 
 
5.12.3  Input Proposal 

Section 5.12.1 discussed the problem setting for reinforcement learning algorithms to function 
and the related challenges. With the current workaround applied, the problem setting was 
capable of handling continuous variables with different orders of magnitude scales. The way the 
reinforcement learning optimizer chose its next action was further improved by fixing these three 
key disadvantages:  
 

• Local optimality. The actions currently used are the portion of changes based on current 
variables. That means the next action would always be in the neighborhood of the current 
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variables. Once the optimization hits a local optimal, it is difficult to get out of it in this 
manner.  

• Scalability. Every action is a change to a certain variable. When the number of variables 
increases, the number of actions to update the variables grows exponentially.  

• Quadrant. The proportional change makes the variables unable to cross quadrant. 
 
To address the disadvantages, a key feature of neural networks, called the differentiability, is 
used. All neural networks have to be differentiable so that they can use a gradient-based 
approach in training. Such differentiability means it is possible to analytically compute the 
partial derivative of the output of neural network (the predicted value of action) with respect to 
the input (action). The best part of this approach is that most modern machine-learning 
frameworks have automatic differentiation engines so that the proposed partial derivative can be 
computed automatically during runtime without the need for user inputs, as shown in Figure 78. 
 

 

Figure 78. How a Neural Network Analytically Computes its Partial Derivative Automatically 

Specifically, the neural network acts as a mapping between the input a, network weights w, and 
the output v.  
 

F(a,w) = v (131) 
 
This means for a specific combination of input a and network weights w, the output v is 
determined. The target is to find the action a′ that maximizes the output. 
 

𝑎𝑎′ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐹𝐹(𝑎𝑎,𝑤𝑤)� = 𝑎𝑎 − 𝑠𝑠 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (132) 
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Here, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the partial derivative, s is the step size, and a is current action. In practice, the updated 
equation is more sophisticated and includes momentum and approximation of second derivatives.  
 
In this way, the optimizer can computationally get the action that the neural network believes to 
be best. In this study, this technique is called “input proposal.” Because the neural network is 
randomly initialized and the starting point of action is also random, the optimization has enough 
randomness to keep a good exploit-exploration balance, as discussed in Section 5.12.2. For this 
study, a safeguard was implemented to limit the range of update of the action to be within 10 
times of current action. This was to prevent the neural network from giving unrealistic 
suggestions, which is possible at the beginning of training when the neural network does not 
have considerable knowledge of the target problem. The high-level workflow of the input 
proposal in shown in Figure 79. 
 

 

Figure 79. High-Level Workflow of How Input Proposal Technique is Implemented    

5.12.4  Evaluation 

Like previous optimizers, the reinforcement learning optimizer was evaluated on both the 
synthetic three-layer structure and the field-measured data. The optimization progress on the 
synthetic three-layer structure is shown in Figure 80. The final RMSRE was 1.24 percent. 
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Figure 80. Optimization Progress of Reinforcement Learning Optimizer on the Synthetic  
Three-Layer Structure  

The performance of the reinforcement learning optimizer was further evaluated on the field-
measured data. The recovered variables are shown in Table 33. The final RMSRE was 1.1259 
percent. This is comparable with traditional optimizers. 

Table 33. Optimization Performance of Q Learning Optimizer on Field-Measured Deflections  

Layer Variable Seed Value 
Recovered Value 

by Optimizer 

AC 

Sigmoidal Coefficients  Delta –0.9 –0.45020 
Sigmoidal Coefficients  Alpha 4.5 5.81494 
Sigmoidal Coefficients  betaPrime –0.7 –0.09034 
Sigmoidal Coefficients  Gamma –0.4 –0.16938 
Modulus at 17 Hz (ksi)  E1 356 770.1 

Base 
Modulus (ksi)  E2 20 28.1 
Rayleigh Damping 
Coefficient βR  BBase 0.003 0.0024465 

Subgrade 
Modulus (ksi)  E3 5 13.4 
Rayleigh Damping 
Coefficient βR  BBase 0.003 0.0024465 

 
5.13  ENSEMBLE LEARNING 

To date , several popular optimization methods have been implemented and evaluated. These 
methods have shown strong heterogeneity in terms of robustness, convergence speed, and 
performance. A natural question is whether these optimizers should be combined together to get 
the best of them all. This is possible if the framework was carefully designed to handle the 
combination of optimizations. This technique is called ensemble learning, which entails having 



 

118 

an optimizer start from where a previous optimizer ends. Ensemble learning is frequently used 
for classification problems, as shown in Figure 81, and it is a great match for the backcalculation 
optimization problem as a variety of optimization methods are developed. 
 

 

Figure 81. Ensemble Learning by V7aLab  (Kundu, 2022) 

5.13.1  Framework Update 

The optimization framework (Figure 82) is designed at the beginning of the optimization efforts 
with several powerful features to support the smooth and highly efficient usage of optimizers. 
However, multiple optimizers working together is not part of expected use cases for the 
optimization framework. Thus, the framework is patched in aspects described in Sections 
5.13.1.1 through 5.13.3. 
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Figure 82. Optimization Framework Overview with Ensemble Learning Controller 

5.13.1.1  Ensemble Learning Controller 

In the original design of the optimization framework, the optimization control is entrusted to the 
optimizer. This includes where to try the next set of variables, when the optimization is 
considered finished, etc. For a multi-optimizer case, optimization fails if there are multiple 
control flows at the same time. Thus, a unified controller is implemented for the optimization 
workflow. The updated control workflow and framework is shown in Figure 82. This is a 
significant engineering effort as the optimizer needs to be refactored in a three-fold way. First, 
the control part and the optimization part need to be separated. Next, the optimization part needs 
to be tailored to fit the API of the controller. Finally, the optimizer needs to be modularized and 
self-contained, which means it takes care of all its intermediate states and variables so they do 
not get confused among optimizers and can be easily used by the controller. These three 
requirements mean the optimizer has to be completely reworked, which adds up to a non-trivial 
effort. The good news is that such effort is well-compensated as the reworked optimizer not only 
enables ensemble learning but also enables many sophisticated controls that benefit the overall 
optimization performance. 
 
A key example is the adaptive stopping of optimization, which is related to a simple yet critical 
question of when the optimization should be considered finished. Two commonly used criteria 
are when a certain number of iterations are done and when the results do not change much in the 
last certain iterations. In this case, those two criteria are not applicable. For the first criterion, 
large numbers of iterations would prolong the optimization without improving the results, 
whereas insufficient iterations would lead to suboptimal results. For the second criterion, many 
optimizers would jump around the optimal point even if it converges; so, this criterion does not 
apply in this case. With a unified controller, this dilemma can be easily alleviated by using 
adaptive stopping. Adaptive stopping is a progress-based criterion where each optimizer starts 
with certain initial budget/patience, and the budget/patience would be restored every time the 
optimization progresses (i.e., achieves a new best RMSRE). In this manner, the optimization 
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would run indefinitely as long as the optimizer is still improving the results and would end when 
the optimization converges. 

 
5.13.1.2  Cache Sharing 

Caching is a key mechanism in the optimization framework that greatly reduces the number of 
actual PULSE_FE calculations, especially for the classic derivative-based optimizers. In previous 
optimization workflows, optimizers report to the cache, yet with different standards. For 
example, some optimizers take RMSRE larger than 100 percent as a failure, whereas others use 
300 percent or an infinitely large number. In the updated framework, the cache has a hierarchy. 
The system/framework cache is global, unique, and directly connected to the PULSE_FE so that 
only the raw results are recorded. The optimizer cache is optimizer dependent and is periodically 
synchronized with the system cache. In this manner, the PULSE_FE calculation will always be 
recorded and available to all optimizers, no matter which optimizer invoked it. Also, the 
optimizer can still have independent standards for the cache, such as failure. 
 
5.13.1.3  Automatic Error Recovery 

Note that the idea of ensemble learning is to have another optimizer take over where previous 
optimization ends. Yet a very common reason for the optimization to end is the optimizer hitting 
a dead-end or illegal point. For most non-learning-based optimizers, starting with a dead-end or 
illegal point simply leads to failed optimization. To take on this challenge, an integrity check 
should be implemented to detect if the current point is a bad starting point when switching 
optimizers. 
 
If the current point is detected to be a bad starting point, it should be determined how the 
framework would pick a good starting point instead. A straightforward solution is to use a point 
from the optimization history, yet there is a dilemma. On the one hand, an ideal starting point 
should be far away from the current bad point, so the optimization does not fall into this bad 
point again. On the other hand, an ideal point should be close to where the previous optimization 
ends so the framework does not waste time redoing the same optimization. Researchers 
addressed this challenge by using the Maxwell–Boltzmann distribution to pick a safe point 
according to a probabilistic distribution based on RMSRE instead of distance. The Maxwell–
Boltzmann distribution originates from the thermodynamic theory that describes the distribution 
of speeds among the particles in a sample of gas at a given temperature. The Maxwell–
Boltzmann distribution can be intuitively understood as: 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎) = exp(𝑎𝑎)
∑exp(𝐴𝐴) ,  𝑎𝑎 ∈ 𝐴𝐴  (133) 

 
The chance of an item with value a being picked is equal to the exponential value of a over the 
sum of exponential value of all the items. For backcalculation problem, the RMSRE could vary 
with different orders of magnitude and guaranteed to be non-negative. Thus, a simpler and more 
feasible form of Maxwell–Boltzmann distribution is used: 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎) =
1
𝑎𝑎

∑ (1𝐴𝐴)
,  𝑎𝑎 ∈ 𝐴𝐴  (134) 
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In this way, any failed optimization would be recovered to a random point with good RMSRE 
for the next optimizer to start from, as shown in Figure 83. 
 

 
 

Figure 83. Automatic Error Recovery Starts Next Optimizer When Previous One Fails 

5.13.2  Evaluation 

The performance of ensemble learning is assessed by combining the Newton’s method optimizer 
and reinforcement learning, using the field-measured data. These data originate from the LTPP 
database for test section 01-0101 in Alabama, where the pavement section consists of a 7.4-inch 
AC layer and a 7.9-inch unbound granular base layer constructed over untreated subgrade 
material. The FWD data used in this study were collected on March 11, 1998, with a surface 
temperature of 87 °F. 
 
In this ensemble setting, Newton’s method optimizer and reinforcement learning were employed 
interchangeably with a patience threshold of three. This means that when one optimizer fails to 
show progress in three consecutive iterations, it yields control to the other optimizer. The overall 
optimization progress is assessed by RMSRE in relation to the total number of Pulse 
calculations, as depicted in Figure 84. 
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Figure 84. Ensemble Learning’s Optimization Progress Using Alabama Field-Measured Data 

The final RMSRE is 2.705 percent, and the recovered variables are shown in Table 34. If the 
optimizers are applied alone, then the Newton’s method optimizer converges at 50 percent 
RMSRE as the seed variables are not close enough to the optimal points, and the reinforcement 
learning optimizer converges at around 10–20 percent RMSRE. Yet when combined by the 
ensemble learning, these two optimizers with the interleaving process get the RMSRE to as low 
as 2.7 percent, which demonstrates the potential of ensemble learning. 
 

Table 34. Optimization Performance of Ensemble Learning on Alabama Field-Measured Data 

Layer Variable Seed Value 

Recovered 
Value by 
Optimizer 

AC 

Sigmoidal Coefficients  delta –0.9 –0.2677 
Sigmoidal Coefficients  alpha 4.5 3.9329 
Sigmoidal Coefficients  betaPrime –0.7 –0.0824 
Sigmoidal Coefficients  gamma –0.4 –0.6468 
Modulus at 17 Hz (ksi)  E1 356 324.1 

Base 
Modulus (ksi)  E2 20 6.9 
Rayleigh Damping 
Coefficient, αR (1/s)  alphaR 0.003 –46.6318 

Subgrade 
Modulus (ksi)  E3 5 33.3 
Rayleigh Damping 
Coefficient, βR (1/s)  betaR 0.003 –5.973e–05 
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5.14  CROSS-COMPARISON OF OPTIMIZATION METHODS 

While several of the evaluated optimizers were able to optimize the target problem reasonably 
well, there is a need to evaluate the optimizers more extensively in terms of their recovered 
master curves, robustness, etc. This section presents a cross comparison of optimization methods 
implemented so far to give a better understanding of their relative strengths and weaknesses. 
 
5.14.1  Comparison of Convergence Speed 

In the earlier evaluations, the iteration number was used as the metric of convergence speed. It is 
a common metric and works well under the same optimizer. Yet as there are heterogeneous 
optimizers in this study, the iteration number is no longer a good choice for comparison. For 
example, the Powell’s method optimizer uses dozens of function evaluations for each iteration 
whereas the Nelder–Mead optimizer uses about three function evaluations each iteration. Thus, 
researchers decided to use the number of function evaluations (i.e., the number of calls to FE 
model) as the metric for comparison and rerun the earlier evaluation based on the new metric. 
The results are shown in Figure 85. 
 

 

Figure 85. Comparison of Optimizers’ Convergence on Synthetic Three-Layer Pavement 
Structure (The y-axis is log-scale.) 

5.14.2  Recovered Variables for Synthetic Three-Layer System 

Table 35 shows all recovered variables from the optimizers in an aggregated view. It can be 
concluded that the success rate of recovering variables depends on variable types. Most 
optimizers can find the target moduli for layers, whereas only some optimizers can find the right 
Rayleigh damping coefficients. For the sigmoidal coefficients, further evaluation is needed as 
there could be multiple sets of sigmoidal coefficients that all show a similar pattern in a certain 
range of the master curve (certain range of frequencies or time). 
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Table 35. Recovered Variables from All Optimizers for Synthetic Three-Layer System  

Optimizer delta alpha betaPrime gamma 
E1 at 17 
Hz (ksi) E2 (ksi) BBase E3 (ksi) BSG 

Target 
Values –0.13400 3.7030 –0.46512 –0.54800 469.12 40.000 0.002000 5.000 0.002000 

Newton –0.92000 4.9410 –0.46856 –0.39800 447.96 40.229 0.001930 5.000 0.001970 

BFGS –0.92500 4.6820 –0.28900 –0.69700 424.76 39.882 0.001500 4.959 0.001980 

L–BFGS–B –1.0080 4.5200 –0.26200 –0.64700 222.49 49.881 0.003010 5.101 0.001000 

Powell –1.3160 4.4510 –0.89700 –1.15100 542.34 39.089 0.001960 4.999 0.001980 

Nelder–Mead –0.00704 5.3218 –0.00271 –0.01290 477.22 38.316 0.003010 5.022 0.002160 

Bayesian –1.9911 4.9623 –0.47536 –0.23882 25.11 66.877 0.003406 5.773 0.001807 

Levenberg–
Marquardt –0.18517 3.7032 –0.62250 –0.49035 476.20 39.786 0.002132 5.003 0.002022 

Trust Region 0.95367 2.7299 0.08060 –0.50326 476.01 39.727 0.002144 5.006 0.002007 

Dogleg 0.24286 3.3323 –0.21190 –0.61459 454.94 40.314 0.001908 4.997 0.001985 
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5.14.3  Recovered Master Curves 

One interesting phenomenon from previous evaluation results is that every optimizer gave 
different master curve variables, yet most of them still achieved good RMSRE. Therefore, the 
reasonableness of the recovered variables from the various optimizers must be evaluated by 
comparing the backcalculated master curves for the AC layer. Evaluations were carried out on 
the synthetic three-layer pavement structure. Results, shown in Figure 86, indicate that most 
optimizers were able to fit the target master curve (i.e., the input master curve in the forward 
calculation) suitably within the frequency range of the measurements induced by the FWD 
testing (~10–100 Hz). This demonstrates the effectiveness of the optimizers in backcalculating 
the portion of the master curve within the excited frequencies under the load.  
 
Additional ways to recover the target master curve more accurately were explored. The key 
challenge was that the target line segment (10~100Hz) was too short, whereas the fitting 
equation had four free variables (see Section 4.2.1). Therefore, multiple sets of variables could 
have fit the target line segment reasonably well, as shown in Figure 86. However, not all of those 
fitted variables are feasible in practice. Thus, researchers proposed to co-optimize deflections 
measured at different temperatures on the same pavement structure to improve the feasibility of 
the recovered variables. The key idea of this proposal is that the change of temperature would 
cause the master curve to shift horizontally because of the time-temperature superposition 
principle (TTSP). Thus, by using multiple temperatures there would be multiple target line 
segments, which could be an improvement. 
 

 

Figure 86. Comparison Between the Backcalculated Master Curves from All Optimizers and the 
Target Master Curve 

5.14.4  Trustiness of the Recovered Master Curves 

Based on the research up to this point, it could be concluded that the recovered master curves 
matched the target master curve only in the test frequency range (i.e., excited load-induced 
frequency range). Therefore, it should be determined how users know which part to trust in the 
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recovered master curves. A key observation of this study was that different optimizers gave 
diverse master curves. However, all the best-fit curves tended to overlap within the test 
frequency range. Considering that most classic optimizers, like the Newton optimizer, do not 
have convergence guarantee, it means for different seeds, these classic optimizers will give 
different results. Thus, researchers proposed to generate the trust region directly from the 
deflections without the need of a priori knowledge, i.e., to use different seeds to get different 
master curves. Then, the overlapping area can be used to get the test frequency range. 
 
To determine how the trust region of the master curve is located using a Newton optimizer, 
multiple optimization processes were run with different initial variables (seeds). All the proposed 
master curves from these optimization processes were recorded, as shown in Figure 87; the blue 
curves indicate the proposed master curves, and the thick black curve shows the target master 
curve. 
 
As shown in Figure 87, there is no obvious pattern because the master curves from the optimizer 
are randomly overlapped, and some curves are showing even infeasible patterns due to the 
unconstrained nature of Newton’s method. Thus, the curves are filtered with the RMSRE metric. 
The assumption is that if a master curve can generate deflections very similar to the target 
deflections, then it should be closer to the target master curve. 

 

 

Figure 87. Comparison of the Backcalculated Master Curves from the Newton Optimizer with 
Different Seeds 

Figure 88 shows the master curves with an RMSRE of 5 percent of less. The pattern is very clear 
in the figure where the master curves diverge in all other areas but the ~10–100Hz range. When 
comparing the overlapped regions to the target master curve, they are nearly identical. That 
means this approach can successfully locate the trust region in a master curve without the 
knowledge of the actual test frequency range used in the field experiments (i.e., during 
HWD/FWD testing). 
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Figure 88. The Backcalculated Master Curves from the Newton Optimizer with Different Seeds 
Showing only the Curves with an RMSRE of Five Percent or Less  

An automatic approach was proposed in this study to determine this trust region by considering 
the coefficient of variation (COV) in terms of each frequency. COV is a statistic of a variable 
that stays independent of its mean (scale). Thus, the COV at each frequency gives a numerical 
measurement of how much the master curves overlap at each frequency as shown in Figure 89. 
 

 

Figure 89. The COV Percentage at Each Frequency for the Master Curves   

The next step was to determine what should be the threshold for a frequency that is considered to 
be within the test frequency range. As shown in Figure 90, the acceptable repeatability 
recommended by AASHTO T 378 (2017) was implemented for the expected moduli. 
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Nominal 
Maximum 
Aggregate 
Size, mm 

Average |E*|, MPa 

Dynamic Modulus 

Sr
%

 

% 

Acceptable Range for n Specimens, % of Average 

n=2 n=3 n=4 n=5 n=6 

19 ≥ 137 to < 200 20 56 66 72 78 80 

19 ≥ 200 to < 500 16 46 54 59 64 65 

19 ≥ 500 to < 1,000 14 38 45 49 53 55 

19 ≥ 1,000 to < 2,000 12 32 38 42 45 46 

19 ≥ 2,000 to < 5,000 9 27 31 34 37 38 

19 ≥ 5,000 to < 10,000 8 22 26 28 31 32 

19 ≥ 10,000 to < 16,400 7 19 22 24 26 27 

Note: Sr% = repeatability coefficient of variation for |E*|, percent 

Figure 90. Repeatability COV Suggested by AASHTO T 378 (Red box points to the acceptable 
COV values for a modulus between 1,000 and 5,000 MPa.) 

To validate the correctness of the frequency inferred by this approach, the recovered master 
curve is compared to the target master curve under three different temperatures: 39.2 °F, 68 °F, 
and 104 °F. As shown in Figures 91 through 93, the recovered master curves match closely with 
the target curves within the inferred frequency range regardless of seed values used by the 
Newton optimizer. This suggests the complex potential of the proposed method.  
 

 

Figure 91. Comparison of the Recovered Master Curve and the Target Master Curve in Trust 
Frequency Range at Temperature 39.2 °F 



 

129 

 

Figure 92. Comparison of the Recovered Master Curve and the Target Master Curve in Trust 
Frequency Range at Temperature 68 °F 

 

Figure 93. Comparison of the Recovered Master Curve and the Target Master Curve in Trust 
Frequency Range at Temperature 104 °F) 

Now that the correctness of the inferred frequency range is validated, the trust frequency ranges 
inferred from different temperatures are used to improve the quality of the recovered master 
curves. The key idea is that the master curve of the same pavement structure at different 
temperatures shares all variables, but the betaPrime and the relationship of the target master 
curves are shifting horizontally. Thus, when there are three target master curve segments, it is 
possible to compute the shifting of each temperature: 

 
log(𝑓𝑓𝑟𝑟) = log(𝑓𝑓) + 𝑎𝑎1(𝑇𝑇𝑅𝑅 − 𝑇𝑇) + 𝑎𝑎2(𝑇𝑇𝑅𝑅 − 𝑇𝑇)2 (135) 

 
log(𝑎𝑎𝑇𝑇)= 𝑎𝑎1(𝑇𝑇𝑅𝑅 − 𝑇𝑇) + 𝑎𝑎2(𝑇𝑇𝑅𝑅 − 𝑇𝑇)2 (136) 

 
More details of these equations can be found in Section 4.2.1.c. Based on previous analysis, the 
fitted 𝑎𝑎1 and 𝑎𝑎2 are found to be 0.06561 and 0.000106, respectively. The fitted line is shown in 
Figure 94. With the known horizontal shifting, the master curve segments could be moved to a 
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reference temperature and used to fit the target master curve more preciously than fitting with 
only one segment. The recovered master curve by this approach is shown in Figures 95, 96, and 
97. For all temperatures, the fitted master curve closely overlaps with the target even outside the 
test frequency range. This advantage is more obvious when comparing with the data in Figure 
86, suggesting the proposed method is more effective. Table 36 summarizes the variables 
determined from the optimizer along the variables from the fitted master curves at three 
temperatures. 
 

Figure 94. Linear Fitting of Temperature vs Shifting of the Master Curve log(aT) 

 

 

Figure 95. Fitted Master Curve with Three Master Curve Segments Shifted from Other 
Temperatures at 39.2 °F 
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Figure 96. Fitted Master Curve with Three Master Curve Segments Shifted from Other 
Temperatures at 68 °F 

 

Figure 97. Fitted Master Curve with Three Master Curve Segments Shifted from Other 
Temperatures at 104 °F 
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Table 36. Comparison of the Variables from the Optimizers vs the Variables from the Fitted 
Master Curves at Three Temperatures 

Parameters 
Fitted Parameters from 

Optimizer 
Fitted Parameters from Master 

Curves 
Target 

Parameters 
39.2 °F (10–1,000Hz) 

delta 0.7756 1.0260 0.6991 
alpha 5.5526 2.5156 2.7761 
gamma –0.0560 –0.5655 –0.5887 
beta′ 0.2347 –1.6305 –2.1747 
E2 34.872 – 35 
E3 7.013 – 7 
alphaR 29.74 – 30 
betaR 0.0030 – 0.003 

68 °F (1–1,000Hz) 
delta 1.3473 1.0260 0.6991 
alpha 2.4079 2.5156 2.7761 
gamma –0.4551 –0.5655 –0.5887 
beta′ –0.1075 –0.51218 –0.72193 
E2 34.975 – 35 
E3 7.003 – 7 
alphaR 29.930 – 30 
betaR 0.002997 – 0.003 

104 °F (10–100Hz) 
delta 0.4332 1.0260 0.6991 
alpha 4.9758 2.5156 2.7761 
gamma –0.3083 –0.5655 –0.5887 
beta′ 0.9344 0.7459 0.4457 
E2 35.029 – 35 
E3 7.002 – 7 
alphaR 29.921 – 30 
betaR 0.003003 – 0.003 

–Not applicable 
 
This further demonstrates the power of the proposed method by comparing the original variables 
provided by optimizer, the variables from fitted master curves, and the target variables. The 
variables from the fitted master curves are more similar to the target variables. This suggests that 
this approach could serve as a complementary part to existing optimization approaches.  
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5.14.5  Summary 

Table 37 summarizes the optimizers that were evaluated in this study along with their properties 
in terms of: 
 

• Algorithm computation cost 
• Well-fitting synthetic one-layer system deflections 
• Well-fitting synthetic three-layer system deflections 
• Well-fitting field-measured three-layer system deflections 
• Constrained optimization 

Table 37. Summary of Optimization Methods and Their Properties 

Optimizer 

Algorithm 
Computation 

Cost 

Well-
Fitting, 

Synthetic, 
One-Layer 

System 
Deflections 

Well-Fitting, 
Synthetic, 

Three-Layer 
System 

Deflections 

Well-Fitting, 
Field-

Measured, 
Three-Layer 

System 
Deflections 

Constrained 
Optimization 

First-Order 
Newton Low Yes Yes (0.05%) Yes (0.007%) No 

Second-Order 
Newton Low No No 

(Diverged) 
No 
(Diverged) No 

BFGS Low Yes Yes (0.42%) No (13.20%) No 
L-BFGS-B Low Yes Yes (1.36%) Yes (1.46%) Yes 
Powell Low Yes Yes (0.12%) Yes (1.95%) Yes 

Nelder–Mead Low – Yes (0.58%) Moderate 
(2.34%) No 

Bayesian Moderate – Moderate 
(3.85%) No (6.74%) Yes 

Levenberg–
Marquardt Low – Yes (0.085%) Yes (0.67%) Yes 

Trust Region Low – Yes (0.098%) Yes (0.693%) Yes 
Dogleg Low – Yes (0.055%) Yes (0.676%) Yes 
Reinforcement 
Learning High – Yes (1.24%) Yes (1.125%) Yes 

–Not evaluated 
 
6.  GRAPHICAL USER INTERFACE 

With the many developments in the FE methodology and optimization, the end goal of this 
project is to deliver an easy-to-use tool for pavement engineers. This study delivered Graphic 
user interface (GUI)-based software. The software is:  

 
1. Graphical—users are able to use all functionality of this software by interacting with 

its graphic interface.  
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2. Compatible—the software supports all modern operating systems including Windows 
7, 10, and 11. 

 
The software GUI uses a button-page-based design. Currently, it consists of the Create Mesh and 
FWD File button (call and execute mesh generator program), the Material Property button 
(material property setting), the Forward Analysis button (perform forward calculation), and the 
Dynamic Backcalculation button (perform the backcalculation). These four buttons on the main 
page split the whole workflow into four steps with their corresponding contents. Users need to 
finish the work on Create Mesh and FWD File button before working on the Material Property 
button. The Forward Analysis button cannot be enabled before finishing the content in buttons 
Create Mesh and FWD File and Material Property. At the same time, the software allows dual 
unit systems throughout the program. 
 
The following deliverables are targeted for the GUI software; it is a standalone software tool that 
performs backcalculation and optimization. It ships with: 
 

• Installer 
• Easy-to-use GUI 
• Constraints for optimization 
• Robust error handling 

 
The software is finished with python code and properly aligns with the optimization code 
naturally. 
 
6.1  DESIGN METHODOLOGY 

Several important principles need to be enforced on the design of the BAKFAA Dynamic 
Backcalculation (DynaBAKFAA) software GUI before GUI coding can be conducted (note: 
Software GUI design refers to the process of creating user interfaces for software applications). 
 

• Simplicity. Keep the interface simple and easy to use. Avoid clutter, unnecessary 
features, and complex designs. A simple and intuitive interface can help users to quickly 
understand how to use the software. In this GUI program, layout is kept simple and easy 
to understand. 

• Consistency. Consistency in design means that all elements of the interface should look 
and function the same way throughout the application. This helps to avoid confusion and 
makes the interface more predictable. 

• Feedback. The interface should provide clear and timely feedback to the user. For 
example, when a button is clicked, the user should see a response or an indication that the 
action was successful. 

• Error prevention and recovery. The interface should be designed to prevent errors and to 
help users recover from them if they do occur. For example, providing helpful error 
messages can help users to correct mistakes or avoid them in the first place. 

• Visibility. The interface should make important information and features clearly visible to 
the user. This can include using color, size, or placement to draw attention to important 
elements. 



 

135 

• Responsiveness. The GUI should be responsive and efficient, with fast loading times, 
smooth animations, and minimal lag. This helps to make the software feel more polished 
and professional. 

• Aesthetics. The interface should be visually appealing and well-designed. This can 
include using color, typography, and other design elements to create a pleasing and 
engaging interface. 

 
By following these principles, the software interfaces were created in a manner to be easy to use, 
visually appealing, and effective at helping users to accomplish their goals. 
 
6.2  ARCHITECTURE 

GUI architecture refers to the design and organization of the various components and modules 
that make up the user interface of a software application. A DynaBAKFAA  GUI architecture 
can provide a good user experience by making the application easier to use and navigate. 
 
The DynaBAKFAA GUI consists of four main buttons, each of which corresponds to a distinct 
functional module (Figure 98). Each module is independent and can interact with others to some 
extent. 
 

 

Figure 98. DynaBAKFAA Architecture of Software GUI 

6.2.1  Main Page 

The main interface is mainly composed of four buttons, each of which lead the user to four 
different main functional pages, as shown in Figure 99. 
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Figure 99. Main Page of DynaBAKFAA Software GUI 

The detailed introductions of the main page are as follows: 
 

• Create Mesh and FWD File 
 

o Directly call and run the mesh generator program (Application). 
o Users need to fill out the input information and generate the mesh file. 

 
• Material Property 

 
o “Create Mesh and FWD File” button content needs to be finished before this page. 
o Users can edit material properties for each layer and save the changes. 

 
• Forward Analysis 

 
o “Material Property” button content needs to be finished before this page. 
o Make forward analysis calculation and plot the results. 
o Users can edit the location settings before running the forward analysis. 
o Users can save comma-separated values (CSV) to customized path. 

 
• Dynamic Backcalculation 

 
o Backcalculation page. 
o Users receive real-time update of the calculation progress. 

 
6.2.2  Create Mesh and FWD File 

The Create Mesh and FWD File page forks a process and calls the MeshGenerator program 
asynchronously (Figure 100). Once the MeshGenerator program is launched, other pages are 
disabled before users finish the MeshGenerator program. 
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Figure 100. Create Mesh and FWD File Button Call MeshGenerator Program  

The GUI of the MeshGenerator is shown in Figure 100. Users need to generate the mesh file 
(.inp format) and the mesh file is used in the upcoming steps. At the same time, once the 
MeshGenerator program is terminated, it signals the DynaBAKFAA GUI program to enable the 
disabled buttons. The generated mesh file is saved to a path within the working directory and the 
path is under a hidden directory without user’s access. The mesh file and the material property 
file are used to perform the forward and backward calculations. 

 
6.2.3  Material Property 

The Material Property page is where users specifically define all the properties of each pavement 
layer. The number of layers on this page is flexible and determined by the user’s input from the 
MeshGenerator program. The GUI can display any number of layers, and users are able to 
customize all necessary material properties within this page. For each layer, there are certain 
properties that can be set and customized as per the user’s requirements. These properties include 
(Figure 101): 
 

• Layer Type: Linear Elastic, Viscoelastic 
• Modulus 
• Layer Thickness 
• Density 
• Poisson’s Ratio 
• Rayleigh damping coefficients α and β 
• Sigmoidal function coefficients for viscoelastic modulus α, β’, γ, and δ 

 
These are the properties of the material for each layer, and this information is used to run the 
forward analysis in the next step. 
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Figure 101. Material Property Page of Software GUI 

6.2.3.1  Handling US and SI Units 

DynaBAKFAA  GUI supports both US and SI unit systems simultaneously. This means that 
users can choose to work with either unit system based on their preference or the requirements of 
their own project. 
 
The US unit system is commonly used in the United States and includes units such as inches, 
feet, pounds, and gallons. The SI unit system is the international standard and includes units such 
as meters, kilograms, and liters. 
 
With the GUI software’s ability to support both unit systems, users can easily switch between 
them and work with the one that is most convenient for their task. This flexibility can save time 
and effort for users who might need to work with different unit systems in their work or research. 
 
6.2.3.2  Persistent Changes 

The Save and Exit button allows users to save any changes made to a cached file and exit this 
page. The input information will be saved and cached in the designated path within the software, 
with a cache lifespan that lasts for the duration of the software’s runtime. This means that when 
the software is closed completely, the input information from the previous session will not be 
retained, and when the software is opened again, the input information will revert to the default 
values. 
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6.2.3.3  Input Validation Check for Data Entry 

Input validation check for every entry means the process of verifying and validating the data 
entered by the user before it is retained to the cached file by the GUI. This is an important step to 
help ensure the accuracy and integrity of the data and prevent errors or issues from occurring 
during the processing of the data. 
 
The DynaBAKFAA  input validation checks include checking for the correct data type, verifying 
that the data fall within acceptable ranges or limits, and ensuring that the data are in the correct 
format.  
 
By performing input validation checks for every entry, DynaBAKFAA  GUI software can ensure 
that the data entered by the user are accurate and valid before processing. This helps prevent 
errors and issues that might arise from processing invalid data, such as crashes, incorrect 
calculations, or incorrect outputs. 
 
With the input validation check, the software shows a warning (example shown in Figure 102) 
that details the error types and where the error happened so that users can identify and modify 
the error conveniently. 
  

 

Figure 102. Error Warning Information 

6.2.4  Forward Analysis 

The Forward Analysis button takes the mesh file generated by the first button and the material 
properties information stored in a cached JSON format file in the second button, along with the 
number of nodes as parameters and passes them into the calculation program PULSE_FE to 
perform the forward analysis. 
 
After running the PULSE_FE calculation program with the previous input, the corresponding 
results are plotted based on the distance parameters as shown in Figure 103. On the left Y-axis, 
surface deflection is represented, on the right Y-axis FWD load is represented, and the X-axis 
represents time. Different curves correspond to results from different radial distances. 
 
An option (Export to CSV button) is also provided to store the detailed results generated by the 
calculation to a customized path within a CSV format file. This option can be used by 
researchers for more in-depth exploration. 
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Figure 103. Deflection Plotting Page of Software GUI 

6.2.5  Dynamic Backcalculation 

The Dynamic Backcalculation page of software GUI layout is shown in Figure 104. The target 
page has the full functionality of the most viable optimization methods discussed in Section 5. 
 

 

Figure 104. Dynamic Backcalculation Page of Software GUI 
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6.3  ROBUSTNESS 

6.3.1  User Input Check 

Users need to give the pavement structure layer information that is in different orders of 
magnitude. Thus, it is important the software correctly parse user input. Currently the software 
can take arbitrary numbers/floats even with scientific notations and will prompt for incorrect 
inputs. 
 
6.3.2  Applied Loads 

PULSE_FE expects the applied loads to start from (0,0), but that is not always the case as the load 
level for location 0 is often missing. Thus, the Dynamic Backcalculation software will 
automatically set (0,0) if it detects the load information for location 0 is missing. 
 
7.  DATABASE 

The ensemble learning training phase, while yielding good results, often imposes a notable time 
burden, potentially extending to a duration of up to 20 hours. Such a prolonged timeframe 
presents an obstacle for most users, for whom obtaining prompt and quality outcomes is of 
importance. Considering this challenge, strategies to expedite this training process were explored 
to make the use of the tool more practical and accessible to users. 
 
The solution to this predicament centers on a two-fold approach, the pivotal element of which 
revolves around harnessing the power of a precomputed PULSE_FE data set. This data set is 
generated through extensive prior runs and then cataloged within a dedicated database. The 
creation of the database benefits the training process in two aspects: (1) a good initial starting 
point could largely speed up the convergence process and (2) the cached database entries could 
be reused by the program. 
 
7.1  MOTIVATIONS 

The PULSE_FE program requires a significant amount of time to produce results—typically 
ranging between 40 to 80 seconds—and is contingent upon varying material properties and mesh 
file sizes. In the developed operational workflow, these PULSE_FE simulation outcomes serve 
as the foundation for the machine-learning training. Notably, the machine-learning training 
endeavor necessitates numerous iterations, often numbering in the hundreds or even thousands, 
to attain convergence. 
 
In the context of the established workflow, each training iteration hinges upon the availability of 
PULSE_FE results. Consequently, a single iteration demands at least 40 seconds to complete. 
Based on prior experiences, the cumulative training process can extend beyond 20 hours in 
pursuit of an acceptable solution. 
 
The primary rationale behind establishing a dedicated database lies in its capacity to significantly 
curtail the requisite training time. By conducting an exhaustive execution of more than 3 million 
instances of the PULSE_FE program and systematically cataloging the resulting data, the 
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database offers the ability to query these outcomes without the need for program re-execution. 
This database infrastructure affords the valuable capability to selectively identify optimal initial 
values and to capitalize on previously generated results throughout the course of the training 
process, thereby significantly enhancing its efficiency. 
 
The database is built with a key-value pair structure, wherein the key corresponds to a specific 
parameter configuration, and the associated value captures the PULSE_FE results. This paired 
information is stored within the files, enabling swift and efficient querying during database use. 
 
The process of ensemble-learning training, as shown in Figure 105, has the possibility of 
yielding highly favorable outcomes. It frequently entails a considerable investment of time, often 
spanning several hours or even extending to tens of hours, before reaching an optimal solution. 
Within this framework, two paramount components exist that have a substantial influence on the 
training speed: 
 

• Initial Point Selection: The choice of the initial point plays a pivotal role in influencing 
the trajectory of the training process. Ensuring an informed selection at this juncture can 
significantly expedite the convergence of the ensemble-learning process. 

 
• Running times of PULSE_FE: An integral facet of the training workflow, the 

PULSE_FE running time stands out as the most computing-intensive element. It can act 
as a bottleneck, impeding the overall training speed. 

 

Figure 105. Database Involved in the Training Process 

7.1.1  Selection of Initial Points 

The machine-learning training process is based on Stochastic Gradient Descent (SGD). In a large 
search space, the selection of the starting point is crucial to the training performance. The 
selection of initial points refers to the starting point or initial values chosen for the model’s 
parameters before the optimization process begins. In machine learning and optimization, the 
choice of initial values can have a significant impact on the convergence and efficiency of the 
optimization algorithm, as shown in Figure 106. 
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Figure 106. Selection of Initial Starting Point 

How initial points impact SGD can be summarized as follows: 
 

• Convergence Speed—The initial values can affect how quickly the optimization 
algorithm converges to the optimal solution. Poorly chosen initial values might result in 
slow convergence or the algorithm getting stuck in suboptimal solutions. 

• Convergence to Global Optimum—For complex loss surfaces, such as in high-
dimensional spaces, different initial values might lead to different local minima. Starting 
closer to the global optimum could increase the chances of finding a better solution. 

• Stability—Poorly chosen initial values might lead to numerical instability during the 
optimization process. This instability can result in erratic behavior of the optimization 
algorithm and potentially prevent it from finding a good solution. 

• Generalization—The initial points can also influence the generalization performance of 
the trained model. Depending on the optimization path followed, the model might 
generalize better or worse to new, unseen data. 

• Avoiding Plateaus—In some cases, starting from certain initial points might lead to 
getting stuck on plateaus or flat regions of the loss surface, slowing down the 
optimization process. 

 
To mitigate the impact of initial points in SGD and other optimization algorithms, practitioners 
often use techniques such as: 
 

• Random Initialization—Initialize the parameters with random values drawn from a 
suitable distribution. This can help in exploring different regions of the loss surface. 

• Pretraining—In some cases, pretraining a model on related tasks or using unsupervised 
learning can provide better initializations for the final optimization task. 
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• Learning Rate Scheduling—Adjust the learning rate during training to account for the 
initial point’s impact and potentially reduce the chances of overshooting or getting stuck. 

• Weight Regularization—Applying weight regularization techniques, such as L1 or L2 
regularization, can help control the initial point impact by encouraging the model to start 
from a more centered position. 

• Ensemble Methods—Training multiple models with different initializations and 
averaging their predictions can help mitigate the risk of getting stuck in poor solutions. 

 
The choice of initial values in SGD and other optimization algorithms can play a crucial role in 
determining the optimization process efficiency, convergence, and the quality of the final 
solution. Experimenting with different initialization strategies and monitoring the optimization 
process are important practices to achieve better results. 
 
In the established workflow, the RMSRE can be calculated beforehand to measure whether the 
point is good or not. Thus, the database can play an important role in this process because all the 
points inside the database can be iterated to find the best initial point at the start of the training 
process. 
 
7.1.2  Cached Training Results 

In the training process, each run generates a new data point, which is stored in the program’s 
cache for future use. During subsequent runs, before starting the PULSE_FE computation, the 
process checks the cache. If the data point is already cached from previous runs, rerunning 
PULSE_FE is avoided, and the cached result is directly used. This prevents unnecessary 
repetitions and reduces the total training time by leveraging existing data points. This approach 
helps to optimize efficiency and resource usage in the established training workflow. 
 
7.2  DATABASE CREATION 

The database scope is determined by a fusion of various feature dimensions working in tandem, 
including: 
 

• FWD Load Duration (ms) 
• Layer 1 Thickness (inches) 
• Layer 2 Thickness (inches) 
• Layer 3 Thickness (inches) 
• Sigmoidal alpha 
• Sigmoidal Beta 
• Sigmoidal Gamma 
• Sigmoidal Delta (psi) 
• Modulus Layer 2 (psi) 
• Modulus Layer 3 (psi) 
• Rayleigh Alpha (1/s)  
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• Rayleigh Beta 
• Modulus Layer 4 (psi) 

 
For the running results from the PULSE_FE program, the following five values for each of the 
nodes, 0, 8, 12, 18, 24, 36, and 60, are collected. There are 35 values in total as the value of the 
key-value pair.  
 

• Peak deflection 
• Fifty-percent duration 
• Time at peak 
• Fifty-percent left time 
• Fifty-percent right time 

 
The amalgamation of these dimensions results in a total of 3,265,920 combinations. A 
preliminary assessment of the aggregate runtime for these combinations suggests an approximate 
duration of 1 month when leveraging 50 computing nodes. The matrix of the combination 
calculation process is shown in Figure 107. 
 

 

Figure 107. Matrix of Database Combinations 

Initially, computing resources from the University of Nevada, Reno (UNR) supercomputing 
center were pursued. Although access to these resources was granted at no cost, the challenges to 
execute the PULSE_FE program on a Linux system were insurmountable. This is most likely 
because the program is a complicated Windows program with various versions of dependency. 
Despite concerted efforts, this path ended in a setback. 
 
Accordingly, cloud computing was pursued. Cloud computing managed to successfully execute 
the program and create a comprehensive database. The cloud computing effort yielded a 
formidable cache of approximately 4 million data points, fortifying the database, and affording 
users a potent repository for future utilization. 
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7.3  CLOUD COMPUTING 

After thorough investigation, it was determined that cloud computing stands as an optimal 
solution for executing the database generation workflow. By briefly analyzing the computing 
scales with the following cloud-computing details, the process was profiled on multiple types of 
Amazon Web Services (AWS) cloud instances.  
 

• 3,265,920 data points 
• Can run each single PULSE_FE run in up to 40 seconds 
• Runs parallel computations on 50 nodes 
• About 1 month computation time 
• 3,265,920 results checkpoints 
• Combines all files to a general database 

 
The t2.medium instance was found as the optimum choice to use for the following reasons: 
 

• The t2.medium instance offers compatibility with the Windows operating system. 
• Among the available computing nodes, the t2.medium instance is the most suitable 

choice to effectively handle the execution of PULSE_FE. 
• The t2.medium instance offers the most cost-effective pricing. 

 
During the evaluation, a comparative analysis of prices across various regions revealed a notable 
discrepancy. Specifically, the cost for identical instances in the U.S. Eastern region (Northern 
Virginia) was discernibly 13 percent lower than that in the U.S. Western region (California). 
Given the intrinsic nature of the PULSE_FE program, the selection of the geographical region 
holds no bearing on its performance. Thus, the U.S. Eastern region (Northern Virginia), was 
selected. 
 
7.3.1  Preparation of the Code 

The AWS Boto3 python package was used as the code API to interact with the actions on the 
cloud instances. AWS Boto3 is the AWS SDK for Python. It provides a convenient and 
programmatic way to interact with various AWS services using Python code. Boto3 allows 
developers to write scripts, applications, and automation tools to manage and interact with AWS 
resources. 
 
With Boto3, a wide range of tasks can be performed, such as creating and managing EC2 
instances, interacting with S3 buckets, managing DynamoDB tables, and configuring networking 
resources. It abstracts the complexities of making API requests and handling authentication, 
making it easier for developers to integrate AWS services into their Python applications. 
 
Boto3 provides a comprehensive set of functionalities to interact with AWS services, and it is 
widely used by developers and development and operations (DevOps) professionals for cloud 
infrastructure management, data processing, and building serverless applications, among other 
use cases. 
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7.3.2  Running the Database Generation Process 

An impressive fleet of more than 70 AWS t2.medium instances was effectively deployed on the 
cloud and strategically harnessed to execute the PULSE_FE program in parallel. During the 
initial phase, a cautious approach was adopted, initiating operations with a subset of 20 nodes. 
This preliminary testing phase ensured the seamless functionality and flawless execution of the 
program. Subsequently, operations were progressively scaled up to encompass 50 nodes during 
less demanding periods. Moreover, during peak hours characterized by heightened computational 
demand, the full complement of 70 nodes was engaged to accommodate the substantial 
processing requirements of the program. This strategic use of computing resources optimized 
efficiency and productivity in support of the project goals. 
 
7.3.3  Finalizing the Database 

Following an intensive 30-day effort, a total of 3,265,920 data points from 70 nodes were 
successfully collected and consolidated into a single file. These results were analyzed, and data 
from checkpoints were parsed to establish key-value pairs using the specified features and 
values.  
7.4  SUMMARY 

Upon successfully creating the database and strategically curating an optimal initial starting 
point, the convergence of training iterations becomes significantly streamlined. As an example, 
Figure 108 illustrates the training process for a specific pavement structure (FWD 30 ms, layer 1 
thickness:14.2 inches, layer 2 thickness: 7 inches).  
 
For the specified pavement structure, a selection of candidate points is made, considering the 
similarity of the pavement structures in the database. Through an iterative process involving 
these candidate points and the calculation of corresponding RMSRE values, the best candidate 
point is identified as the initial training point. Figure 108 illustrates the training process, 
demonstrating rapid convergence and achieving a favorable RMSRE of 1.43 percent within 
150 iterations. Initial evaluations indicate that, in most instances, training can be completed 
within an hour, a significant improvement compared to the previous range of 20 hours when 
starting points are not guided. 
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Figure 108. The Training Process with the Selection of the Initial Point 

8.  OVERALL SUMMARY AND CONCLUSIONS 

This study created an effective and capable finite element (FE) module to assess responses from 
multilayer pavement structures. It handles linear elastic and viscoelastic isotropic materials under 
both static and dynamic heavy weight deflectometer (HWD)/falling weight deflectometer (FWD) 
loading conditions. Validation involved comparing surface deflections with ABAQUS, yielding 
identical results. Notably, the module completes calculations in just 1 to 3 percent of the time 
ABAQUS requires, a significant achievement for dynamic backcalculation feasibility.  
 
Dynamic backcalculation employed the Newton-Raphson root-solving algorithm. Demonstrating 
the capacity to predict the asphalt concrete (AC) master curve, however, proved challenging. 
Backcalculation for a Construction Cycle (CC)-9 flexible test item delivered reliable layer 
variables. Analysis of various FWD drops revealed mild stress-softening behavior in the 
aggregate base and subgrade layers. A parametric study involved 15,552 pavement structures via 
FE modeling, yielding a preliminary list of significant FWD parameters for the backcalculation 
process.  
 
An optimization framework was established to automate the backcalculation, seamlessly linking 
pavement structure modeling, preprocessing, FE modeling, and analysis. Calculated parameters 
could then be directly obtained from the specified variables without manual intervention. 
Implementing various optimizers like Newton-Raphson, Quasi-Newton, Powell, Nelder–Mead, 
Bayesian, and Kalman, coupled with different problem formulations, aided the development and 
evaluation of the optimization framework. Constrained optimization enhanced practical solution 
generation. Experimental evaluation, using synthetic and field-measured data, confirmed the 
effectiveness of the optimization methods and the reliable recovery of model variables through 
the developed approach. 
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Furthermore, a user-friendly GUI program for the BAKFAA Dynamic Backcalculation 
(DynaBAKFAA) software was introduced. This software facilitated tasks such as generating a 
mesh for the pavement structure domain, creating the FWD input files, inputting and editing 
material properties pavement layers, conducting forward analyses to determine pavement 
responses, and performing dynamic backcalculation with various optimizers to ascertain 
pavement variables. 
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APPENDIX A—OPTIMIZATION TECHNIQUE EXAMPLES 

In this appendix, a simple one-layer system with three variables {E, Rayleigh alpha, Rayleigh 
beta} is used to detail how the optimization methods work in the proposed framework. 
 
To be consistent with Section 5.3.5 of the main document, the deflections are generated with {E 
= 20,000 psi, Rayleigh alpha = 20, Rayleigh beta = 0.002}, and the optimizer is given an initial 
variables set of {E = 5,000 psi, Rayleigh alpha= 5, Rayleigh beta = 0.006}. Optimizers are 
expected to tweak the variables to recover the ground truth variables set that are used to generate 
target vertical deflections. Note the ground truth variables are unknown to the optimizers. 

 
A.1  Newton-Raphson Method 

Here is a full update iteration using first-order Newton-Raphson method. According to the 
update Equation 65 of Section 5.3.1,  

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 

 
𝑓𝑓′(𝑥𝑥0) is needed to update 𝑥𝑥. As the target function is not differentiable, the finite difference 
equation 𝑓𝑓′(𝑥𝑥) ≈ 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)

ℎ
 from Section 5.3.3 is used to approximate 𝑓𝑓′(𝑥𝑥0). Note that ℎ is the 

step size. Typically, 1 percent of 𝑥𝑥 is used as the step size. 
 

Table A-1. Example of Calculation for First-Order Derivative Parameters 
 

Rayleigh alpha Rayleigh beta E RMSRE Note 
5 0.006 5,000 98.139 Initial point 𝑓𝑓(𝑥𝑥0) 

5.05 0.006 5,000 98.101 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh alpha) 
5 0.00606 5,000 97.748 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh beta) 
5 0.006 5,050 96.881 𝑓𝑓(𝑥𝑥0 + 1%E) 

 
Table A-2. Example of First-Order Partial Derivative Calculation 

 
F(x) F(x+h) h Partial Derivative Note 

98.139 98.101 0.05 -0.741 Rayleigh alpha 
98.139 97.748 0.00006 -6503 Rayleigh beta 
98.139 96.881 50 -0.0251 𝐸𝐸 

 
Thus, the gradient 𝑓𝑓′(𝑥𝑥0) = [ -0.741 -6503 -0.0251] 

 
𝑥𝑥 is updated as  

𝑥𝑥1 = 𝑥𝑥0 −
𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0)  

= [ 5. 0.006 5000 ] - 98.139 / [ -0.741 -6503 -0.0251] 
= [ 137.374 0.0210 8903] 
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The root-mean-square relative error (RMSRE) for 𝑥𝑥1 is 75.066. Compared with 98.139 of 𝑥𝑥0, 
there is a 25 percent improvement. By iteratively updating 𝑥𝑥 in this way, the target variables can 
be approached to resemble the target deflections. 
 
A.2  Second-Order Newton-Raphson Method 

The updated equation of second-order Newton-Raphson is: 
 

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓′(𝑥𝑥𝑛𝑛)
𝑓𝑓′′(𝑥𝑥𝑛𝑛)

  
 

To compute 𝑓𝑓′′(𝑥𝑥𝑛𝑛) by finite difference: 
 

 𝑓𝑓′′(𝑥𝑥𝑛𝑛) = 𝑓𝑓(𝑥𝑥+ℎ𝑘𝑘)−𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥+𝑘𝑘)+𝑓𝑓(𝑥𝑥)
ℎ𝑘𝑘

 
 

Similar to first-order computation, the derivative parameters for both first order and second order 
are as follows: 
 

Table A-3. Example of Calculation for First-Order Derivative Parameters 
 

Rayleigh alpha E Rayleigh beta RMSRE Note 
5 5,000 0.006 98.139 Initial point 𝑓𝑓(𝑥𝑥0) 

5.05 5,000 0.006 98.101 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh alpha) 
5 5,000 0.00606 97.748 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh beta) 
5 5,050 0.006 96.881 𝑓𝑓(𝑥𝑥0 + 1%E) 

 
Thus, the gradient 𝑓𝑓′(𝑥𝑥0) = [ -0.741 -6503 -0.0251]. 
For second-order terms, they are as follows 
 

Table A-4. Example of Calculation for Second-Order Derivative Parameters 
 

Rayleigh alpha E Rayleigh beta RMSRE Note 

5.05 5,050 0.006 96.844 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh alpha
+ 1%E) 

5.05 5,000 0.00606 97.711 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh beta
+ 1%Rayleigh beta) 

5 5,050 0.00606 96.495 𝑓𝑓(𝑥𝑥0 + 1%E
+ 1%Rayleigh beta) 

5.1 5,000 0.006 98.062 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh alpha
+ 1%Rayleigh alpha) 

5 5,100 0.006 95.648 𝑓𝑓(𝑥𝑥0 + 1%E + 1%E) 

5 5,000 0.00612 97.358 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh beta
+ 1%Rayleigh beta) 
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Based on Finite Difference equation, Hessian matrix can be computed: 
 

�
0.849 25.193 0.000283

25.193 62112 1.222
0.000283 1.222 0.00000943

� 

 
The exact invert of Hessian is computationally expensive, and thus LU decomposition is used to 
approximate it. 
 

�
−1.189 −0.000333 7.557

−0.000333 −0.00000462 0.589
7.557 0.589 29809

� 

 
Thus 𝑥𝑥 can be updated by 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −

𝑓𝑓′(𝑥𝑥𝑛𝑛)
𝑓𝑓′′(𝑥𝑥𝑛𝑛)

 = [2.138   -0.00949 9591]. Unfortunately, the 
updated 𝑥𝑥 leads to an infinite large RMSRE, and thus the optimization diverges. 
 
A.3  BROYDEN–FLETCHER–GOLDFARB–SHANNO ALGORITHM (BFGS) 
 
This example shows a breakdown of how BFGS, the most classical Quasi-Newton method, 
works on the one-layer system. 
 
Given the BFGS updated equations: 
 

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝐵𝐵𝑡𝑡−1𝑔𝑔      
𝑠𝑠𝑡𝑡 = 𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡      
𝑦𝑦𝑡𝑡 = 𝑔𝑔𝑡𝑡+1 − 𝑔𝑔𝑡𝑡      
𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 −

𝐵𝐵𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑇𝑇𝐵𝐵𝑡𝑡
𝑠𝑠𝑡𝑡𝐵𝐵𝑡𝑡𝑠𝑠𝑡𝑡

+ 𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡𝑇𝑇

𝑦𝑦𝑡𝑡𝑠𝑠𝑡𝑡
     

 
and the fact that 𝐵𝐵0 = 𝐼𝐼, it can be concluded that the first step of BFGS is identical to Newton’s 
method. Thus, researchers use the conclusion from Appendix A.1 to set:  
 

𝑥𝑥1 = 𝑥𝑥0 −
𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0) = [137.374 0.0210 8903] 

 
Next is step 2 of the BFGS algorithm: 
 

𝑠𝑠0 = 𝑥𝑥1 − 𝑥𝑥0 = [ 137.374  0.0210  8903 ] - [ 5. 0.006 5000 ] = [132.374  0.015  3903] 
 

To compute 𝑦𝑦0 = 𝑔𝑔1 − 𝑔𝑔0, finite difference (see Appendix A.1) is used to approximate 𝑔𝑔1 : 
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Table A-5. Example of Calculation for First-Order Derivative Parameters 
 

Rayleigh alpha Rayleigh beta E RMSRE Note 
137.374 0.0210 8,903 74.920 Initial point 𝑓𝑓(𝑥𝑥1) 
138.747 0.0210 8,903 75.301 𝑓𝑓(𝑥𝑥1 + 1%Rayleigh alpha) 
137.374 0.0212 8,903 75.277 𝑓𝑓(𝑥𝑥1 + 1%Rayleigh beta) 
137.374 0.0210 8,992 74.475 𝑓𝑓(𝑥𝑥1 + 1%E) 

 
Table A-5. Example of First-Order Partial Derivative Calculation 

 
F(x) F(x+h) h Partial derivative Note 

74.920 75.301 1.373 0.277 Rayleigh alpha 
74.920 75.277 0.0002 1785 Rayleigh beta 
74.920 74.475 89 -0.005 𝐸𝐸 

 
Thus, the gradient 𝑔𝑔1 = 𝑓𝑓′(𝑥𝑥1) = [ 0.277 1785 -0.005] 
 

𝑦𝑦0 = 𝑔𝑔1 − 𝑔𝑔0 =[ 0.277 1785 -0.005]- [ -0.741 -6503 -0.0251] = [ 1.018 8288 0.0201] 
 

With 𝑠𝑠0 and 𝑦𝑦0, the Hessian matrix could be approximated as 
 

𝐵𝐵1 = 𝐵𝐵0 −
𝐵𝐵0𝑠𝑠0𝑠𝑠0𝑇𝑇𝐵𝐵0𝑇𝑇

𝑠𝑠0𝑇𝑇𝐵𝐵0𝑠𝑠0
+
𝑦𝑦0𝑦𝑦0𝑇𝑇

𝑦𝑦0𝑇𝑇𝑠𝑠0
= 

 

�
1.001 24.997 0.0338

24.997 203513 0.493
0.0338 0.493 0.00115

� 

 
And its inverse 𝐵𝐵1−1 = 

�
10565489 2053 0.311519660

2053 0.399 60538
311519660 60538 9185046009

� 

 
 
Thus  

𝐵𝐵1−1𝑔𝑔 = [ -2295954 446.187 -67695387], 
 

which is the direction of update. The actual update is computed with a Wolfe line search by 
defining 𝑓𝑓(𝛾𝛾) = 𝑓𝑓(𝑥𝑥1 − 𝛾𝛾𝐵𝐵1−1𝑔𝑔) and solving 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓(𝛾𝛾)) with respects to 𝛾𝛾 > 0. The details 
of this line search algorithm can be found in Wright and Nocedal, Numerical Optimization, 1999, 
pp. 59–61. For demonstration purpose here, a simple step size, 0.00001, is used. 
 

𝑥𝑥2 = 𝑥𝑥1 − 𝛾𝛾𝐵𝐵1−1𝑔𝑔 = [160.333 0.0165 9579] 
 

The RMSRE for 𝑥𝑥2 is 68.255, which is better than 75.066 of 𝑥𝑥1. By iteratively updating 𝑥𝑥 in this 
way, the target variables can be approached to resemble the target deflections. 
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