
DOT/FAA/TC-24/13

Federal Aviation Administration
William J. Hughes Technical Center
Aviation Research Division
Atlantic City International Airport
New Jersey, 08405

Enhancing Pavement Assessment
with Dynamic Backcalculation:
A Dynamic Finite Element
Approach

August 2024

Final Report

This document is available to the U.S. public
through the National Technical Information
Services (NTIS), Springfield, Virginia 22161.

This document is also available from the
Federal Aviation Administration William J. Hughes
Technical Center at actlibrary.tc.faa.gov.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
United States Government assumes no liability for the contents or use
thereof. The United States Government does not endorse products or
manufacturers. Trade or manufacturer’s names appear herein solely
because they are considered essential to the objective of this report. The
findings and conclusions in this report are those of the author(s) and do
not necessarily represent the views of the funding agency. This document
does not constitute FAA policy. Consult the FAA sponsoring organization
listed on the Technical Documentation page as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center’s Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

 Technical Report Documentation Page
1. Report No.
DOT/FAA/TC-24/13

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle
ENHANCING PAVEMENT ASSESSMENT WITH DYNAMIC
BACKCALCULATION: A DYNAMIC FINITE ELEMENT APPROACH

5. Report Date
August 2024
6. Performing Organization Code

7. Author(s)
Elie Y. Hajj , Rami Skaff , Peter E. Sebaaly, Xiaolong Ma, Heyang Qin, and Feng
Yan

8. Performing Organization Report No.

9. Performing Organization Name and Address
Department of Civil and Environmental Engineering
University of Nevada
664 North Virginia Street
Reno, NV 89557

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
 #692M15-20-T-00032

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
Airport Engineering Division
800 Independence Ave., SW
Washington, DC 20591

13. Type of Report and Period Covered
Final Report

14. Sponsoring Agency Code
 AAS-110

15. Supplementary Notes
The Federal Aviation Administration Aviation Research Division COR was Matthew Brynick.
16. Abstract
The Heavy Weight Deflectometer(HWD)/Falling Weight Deflectometer (FWD) plays a crucial role in assessing pavement’s
structural condition. It consists of applying an impulse load to simulate a moving wheel and measuring pavement surface
deflections. Pavement variables, such as moduli, are determined through backcalculation, which involves a forward model and
optimization. The FAA currently employs static analysis in the BAKFAA software but encounters limitations, particularly with
thick and stiff airfield pavements.

To address these challenges, a dynamic finite element (FE) model was developed under this study that incorporates subgrade
damping to improve the reliability of backcalculation. The dynamic FE model was incorporated in a new tool called PULSE_FE
to accelerate the computational runtime and improve efficiency. Dynamic backcalculation has been successfully applied to a
Construction Cycle-9 flexible test item, and a parametric study has identified key FWD parameters for dynamic backcalculation.

Furthermore, an optimization framework was established to streamline the dynamic backcalculation process, seamlessly
integrating modeling, FE analysis, and multiple optimizers. Constrained optimization was employed to enhance the practicality of
solutions. Additionally, a user-friendly graphical user interface (GUI) program for BAKFAA Dynamic Backcalculation
(DynaBAKFAA) was designed to simplify the tasks from mesh generation to dynamic backcalculation.

In summary, this project introduces a proficient FE model, advances in dynamic backcalculation, and an automated optimization
framework, all poised to enhance pavement assessment and analysis. These developments are supported by a user-friendly
interface designed for practical use.

17. Key Words
Asphalt Concrete, Dynamic Backcalculation, Finite Element (FE)
Model, Optimization, Master Curve, Heavy Weight Deflectometer
(HWD), Falling Weight Deflectometer (FWD), Pavement Assessment,
Impulse Load, Surface Deflections, Forward Model, Moduli, BAKFAA,
Subgrade Damping, PULSE_FE, CC-9 Flexible Test Item, FWD
Parameters, Optimization Framework, Constrained Optimization, GUI
Program, Automated Optimization Framework, Pavement Analysis

18. Distribution Statement
This document is available to the U.S. public through
the National Technical Information Service (NTIS),
Springfield, Virginia 22161. This document is also
available from the Federal Aviation Administration
William J. Hughes Technical Center at
actlibrary.tc.faa.gov.

19. Security Classif. (of this report)
 Unclassified

20. Security Classif. (of this page)
 Unclassified

21. No. of Pages
 179

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

iii

ACKNOWLEDGEMENTS

The Federal Aviation Administration (FAA) deserves acknowledgement for funding this project
and offering continuous support. Ms. Nicole Elias from the University of Nevada, Reno (UNR)
merits recognition for her valuable assistance in the literature review. Dr. Gabriel Bazi’s
contribution to the project, including work on finite element (FE) analysis, development of the
FE standalone model, evaluation of the Newton-Raphson method for predicting the asphalt
concrete (AC) master curve, and backcalculation of layer variables, is also appreciated. Dr. Bazi
provided guidance to the research team throughout the project’s duration.

iv

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY xix

1. INTRODUCTION 1

2. FINITE ELEMENT METHOD 2

2.1 Mechanical Response of Solids and Structures to External Forces 2
2.2 Three-Dimensional Solids 3

2.2.1 Displacement Vector and Motion in 3D Solids 3
2.2.2 Strain Components and Their Mathematical Formulation in 3D Solids 3
2.2.3 Stress Components and Stress Tensors in 3D Solids 4
2.2.4 Stress-Strain Relationship 4

2.3 Axisymmetric Modeling for Simplified Analysis of 3D Symmetric Problems 6

2.3.1 Radial and Axial Displacement Field 6
2.3.2 Strain Analysis in Axisymmetric Solids

with Symmetrical Displacements 7
2.3.3 Vector Representation of Stresses and Their Components 8
2.3.4 Stress-Strain Relationship 9

2.4 Linear Viscoelastic Material Behavior and Rheological Models 9

2.4.1 Viscoelastic Modeling and Generalized Maxwell Elements 10
2.4.2 Numerical Model Development and Viscoelastic

Stress Decomposition 12

2.5 Finite Element Formulation for Linear Axisymmetric Triangular Elements 13

2.5.1 Finite Element Mesh Generation and Structured vs
Unstructured Meshes 13

2.5.2 Discretization of the Displacement Field 15
2.5.3 Discretization of the Strain and Stress Fields 17
2.5.4 Formulation of FE Equations for Dynamic Analysis 18
2.5.5 Stiffness Matrix 19
2.5.6 Mass Matrix 19
2.5.7 Damping Matrix 20
2.5.8 Surface Forces 20

2.6 Transient Dynamic Analysis 21

3. FINITE ELEMENT MODULE 25

v

3.1 Gmsh 27
3.2 Matrices Storage 28
3.3 Static and Dynamic Analyses Comparison with ABAQUS 30

3.3.1 Static Analysis 31
3.3.2 Dynamic Analysis 32
3.3.3 PULSE_FE Computational Efficiency 33

4. DYNAMIC BACKCALCULATION UPDATE 34

4.1 Master Curve Prediction Historical Background 34
4.2 Pulse 2020 Upgrade 35

4.2.1 Asphalt Concrete LVE Behavior 36
4.2.2 Newton’s Method for Approximating Roots 37
4.2.3 Backcalculation Parameters 40

4.3 Master Curve Prediction 42
4.4 Parametric study 45
4.5 Dynamic Backcalculation of FAA Section 49

5. OPTIMIZATION TECHNIQUE 56

5.1 Fully Automated and General Optimization Framework 57

5.1.1 Motivation of the Optimization Framework 57
5.1.2 Input Generation Framework 58
5.1.3 PULSE Application Wrapper 60
5.1.4 Cross-Language Plugin Interface 61
5.1.5 Summary 62

5.2 Optimization Problem Formulation 63

5.2.1 Vector-Based Problem Formulation 63
5.2.2 Scalar-Based Problem Formulation 63
5.2.3 Comparison of the Two Formulations 64

5.3 Traditional Optimizers—Newton-Raphson Method 64

5.3.1 First-Order Newton’s Method 64
5.3.2 Second-Order Newton’s Method 66
5.3.3 Finite Difference 67
5.3.4 Implementation 67
5.3.5 Evaluation 68

5.4 Traditional Optimizers—Quasi-Newton’s Method 76

vi

5.4.1 Broyden–Fletcher–Goldfarb–Shanno Algorithm 77
5.4.2 Numerical Stability 77
5.4.3 Ablation Study 79
5.4.4 Limited-Memory BFGS with Bound Constraints 81
5.4.5 Evaluation 81

5.5 Powell’s Conjugate Direction Method 83

5.5.1 Algorithm 84
5.5.2 Evaluation 84
5.5.3 Powell’s Method Optimizer with Constraints 87

5.6 Nelder–Mead Method 89

5.6.1 Algorithm 89
5.6.2 Evaluation 90

5.7 Bayesian Optimization Method 92

5.7.1 Algorithm 93
5.7.2 Evaluation 95
5.7.3 Parametric Study 98

5.8 Levenberg–Marquardt Algorithm 99

5.8.1 Algorithm 99
5.8.2 Evaluation 100

5.9 Trust Region Algorithm 102

5.9.1 Algorithm 102
5.9.2 Evaluation 103

5.10 Dogleg Algorithm 105

5.10.1 Algorithm 105
5.10.2 Evaluation 106

5.11 Kalman Filter 108

5.11.1 Problem Definition 108
5.11.2 Algorithm 109
5.11.3 Problem Formulation 110
5.11.4 Extended Kalman Filter 111
5.11.5 Evaluation 111

vii

5.12 Reinforcement Learning Optimizer 112

5.12.1 Problem Definition 113
5.12.2 Algorithm 114
5.12.3 Input Proposal 114
5.12.4 Evaluation 116

5.13 Ensemble Learning 117

5.13.1 Framework Update 118
5.13.2 Evaluation 121

5.14 Cross-Comparison of Optimization Methods 123

5.14.1 Comparison of Convergence Speed 123
5.14.2 Recovered Variables for Synthetic Three-Layer System 123
5.14.3 Recovered Master Curves 125
5.14.4 Trustiness of the Recovered Master Curves 125
5.14.5 Summary 133

6. GRAPHICAL USER INTERFACE 133

6.1 Design Methodology 134
6.2 Architecture 135

6.2.1 Main Page 135
6.2.2 Create Mesh and FWD File 136
6.2.3 Material Property 137
6.2.4 Forward Analysis 139
6.2.5 Dynamic Backcalculation 140

6.3 Robustness 141

6.3.1 User Input Check 141
6.3.2 Applied Loads 141

7. DATABASE 141

7.1 Motivations 141

7.1.1 Selection of Initial Points 142
7.1.2 Cached Training Results 144

7.2 Database Creation 144
7.3 Cloud Computing 146

viii

7.3.1 Preparation of the Code 146
7.3.2 Running the Database Generation Process 147
7.3.3 Finalizing the Database 147

7.4 Summary 147

8. OVERALL SUMMARY AND CONCLUSIONS 148

9. REFERENCES 149

APPENDIX A—OPTIMIZATION TECHNIQUE EXAMPLES

ix

LIST OF FIGURES

Figure Page

1 3

2 4

3 6

4 7

5 7

6 8

7 9

8 10

9
11

10 12

11 13

12 14

13 15

14 15

15 17

16 21

17 23

18 26

19 28

20 29

21 32

22

Displacements and Loads for a 3D Solid

Stresses in a 3D Solid Element

Axisymmetric Pavement Problem under FWD Loading

Axisymmetric Solid

Derivation of the Circumferential Strain 𝜺𝜺𝜺𝜺

Derivation of the Radial, Axial, and Shear Strains

Stresses Acting on Differential Volume of Axisymmetric Solid

Hooke, Newton, Maxwell, and Kelvin-Voigt Elements

Relaxation Test with Maxwell Element: Strain History and Resulting
Stress Response

Generalized Maxwell Model

Two-DimensionalStructured and Unstructured Meshes

Linear and Quadratic Triangular and Quadrilateral Elements

Infinite Elements Attached to Boundary of Standard FE Mesh

Axisymmetric Three-Noded Triangular Element

Shape Functions Ni, Nj, and Nk for Three-Noded Triangular Element

Nodal Forces Due to Surface Traction

Newmark’s Constant-Average Acceleration Scheme

PULSE_FE Flowchart

Thin Flexible Pavement Model Produced using Gmsh

Sparse Matrix COO, CSR, and CSC Examples

PULSE_FE and ABAQUS FWD Surface Deflections

PULSE_FE Deflection Time Histories at Various Radial Offsets 32

x

23 PULSE_FE and ABAQUS Vertical Surface Deflections at 0-, 24-, 48-, and 72-inch
Offsets using HHT-α Method 33

24 PULSE_FE and ABAQUS Radial Surface Deflections at 24- and 72-inch Offsets
using HHT-α Method 33

25 PULSE 2020 Application Flowchart 36

26 Example of Newton’s Method for Obtaining the Root of f(x) = -0.5 -2×ln(2-x)
Starting with x0 = 1.9500 38

27 Variations in AC Moduli Due to Variations in Sigmoidal Function Coefficients
using a Step Size h = 0.1 40

28 Typical FWD Surface Deflections Time Histories 41

29 Typical FWD Surface Velocities Time Histories 41

30 Overall Contribution of the Predictor Variables 49

31 Pavement Structure for CC-9 LFS-2S and FWD at NAPTF 50

32 Deflection Basins for CC-9 LFS-2S at Three Load Levels on December 30, 2019 50

33 Surface Moduli for CC-9 LFS-2S at Three Load Levels on December 30, 2019 51

34 Measured vs Calculated FWD Deflections at 13 kips for December 30, 2019 54

35 P-152 Moduli from Triaxial Testing and Dynamic Backcalculation 56

36 Overview of the Optimization Framework 57

37 Overview Comparison of the Previous Manual Input Framework and the
New, Fully Automated Input Generation Framework 58

38 Necessary Analysis Steps to Compose the Final Input File 60

39 Running Time of Input Generation Framework for 30 Runs to Generate Input for a
Three-Layer Pavement Structure 60

40 Complete View of All Components of Optimization Framework 63

41 Example of How Newton’s Method Approaches the Root of a Quadratic Function
from Initial Point x=5 65

42 Code Snippet of Newton Optimizer Implementation 67

43 Synthetic Vertical Deflections for One-Layer Pavement Structure 68

xi

44 First-Order Newton Optimizer Fitting One-Layer Pavement Structure using
Scalar-Based Problem Formulation 69

45 First-Order Newton Optimizer Fitting One-Layer Pavement Structure using
Vector-Based Problem Formulation 69

46 Second-Order Newton’s Method Optimizer Fitting One-Layer Pavement Structure
using Vector-Based Problem Formulation 70

47 Synthetic Vertical Deflections and FWD Loading Time Histories for Three-Layer
Pavement Structure 71

48 First-Order Newton’s Method Optimizer Fitting Three-Layer Pavement Structure
under Vector-Based Problem Formulation 72

49 Second-Order Newton’s Method Optimizer Fitting Three-Layer Pavement
Structure under Vector-Based Problem Formulation 74

50 Field-Measured Deflections and FWD Loading Time Histories from an Actual
Three-Layer System 75

51 First-Order Newton’s Method Optimizer Fitting Field Deflection Data on
a Three-Layer Pavement under Vector-Based Problem Formulation 75

52 First-Order Newton Optimizer Fitting Field Deflection Data on
a Three-Layer Pavement under Vector-Based Problem Formulation
with Respect to Number of Function Evaluations 76

53 Optimization Progress of BFGS on One- and Three-Layer Systems 78

54 How Lack of Numerical Stability Stops Optimization from 𝒙𝒙 to 𝒚𝒚 ∗ 79

55 How Normalization Impacts Optimization: Optimization Space without
Normalization and Optimization Space with Normalization 80

56 Optimization Progress of BFGS Optimizer on Field-Measured Data with
Tuned Step Size and Normalization 81

57 Optimization Progress of L-BFGS-B in One- and Three-Layer Systems 82

58 Optimization Progress of L-BFGS-B on Field-Measured Data for
a Three-Layer System 83

59 Optimization Progress of Powell’s Method in One- and Three-Layer Systems 85

60 Optimization Progress of Powell’s Method on Field-Measured Deflections of
a Three-Layer System 86

xii

61
87

62
88

63
90

64
91

65 93

66
96

67
97

68
98

69
100

70
101

71
103

72
104

73 106

74
106

75
107

76
110

77

Optimization Progress of Powell’s Method on Field-Measured Deflection of
a Three-Layer System with Constraints

Optimization Progress of Powell’s Method on Field-Measured Deflections of
a Three-Layer System with Constraints and a Different Seed Set

Optimization Progress of the Nelder–Mead Method on Deflections of
a Synthetic Three-Layer Pavement Structure

Optimization Progress of the Nelder–Mead Method on Field-Measured Deflections
of a Three-Layer Pavement Structure

Bayesian Optimization Working on Example Function

Optimization Progress of Bayesian Optimizer on Field-Measured Deflections of
a Three-Layer Pavement Structure

Optimization Progress of Bayesian Optimizer on a Synthetic Three-Layer
Pavement Structure

Optimization Progress of Parametric Study of the Bayesian Optimizer on
Field-Measured Deflections of a Three-Layer Pavement Structure

Optimization Progress of Levenberg-Marquardt on Deflections of Synthetic
Three-Layer Pavement Structure

Optimization Progress of Levenberg-Marquardt on Deflections of Field-Measured
Three-Layer Pavement Structure

Optimization Progress of Trust Region on Deflections of Synthetic
Three-Layer Pavement Structure

Optimization Progress of Trust Region on Deflections of Field-Measured
Three-Layer Pavement Structure

How Dogleg Algorithm Works

Optimization Progress of the Dogleg Algorithm on Deflections of Synthetic
Three-Layer Pavement Structure

Optimization Progress of the Dogleg Algorithm on Deflections of Field-Measured
Three-Layer Pavement Structure

The Kalman Filter Workflow Showing how the Algorithm Estimates Current
System States

Optimization Progress of the EKF on Deflections of Synthetic Three-Layer
Pavement Structure 111

xiii

78 How a Neural Network Analytically Computes its Partial
Derivative Automatically 115

79 High-Level Workflow of How Input Proposal Technique is Implemented 116

80 Optimization Progress of Reinforcement Learning Optimizer on the Synthetic
Three-Layer Structure 117

81 Ensemble Learning by V7aLab 118

82 Optimization Framework Overview with Ensemble Learning Controller 119

83 Automatic Error Recovery Starts Next Optimizer When Previous One Fails 121

84 Ensemble Learning’s Optimization Progress Using Alabama Field-Measured Data 122

85 Comparison of Optimizers’ Convergence on Synthetic Three-Layer
Pavement Structure 123

86 Comparison Between the Backcalculated Master Curves from All Optimizers
and the Target Master Curve 125

87 Comparison of the Backcalculated Master Curves from the Newton Optimizer with
Different Seeds 126

88 The Backcalculated Master Curves from the Newton Optimizer with Different
Seeds Showing only the top 5 percent in terms of RMSRE 127

89 The COV Percentage at Each Frequency for the Master Curves 127

90 Repeatability COV Suggested by AASHTO T 378 128

91 Comparison of the Recovered Master Curve and the Target Master Curve in Trust
Frequency Range at Temperature 39.2 °F 128

92 Comparison of the Recovered Master Curve and the Target Master Curve in Trust
Frequency Range at Temperature 68 °F 129

93 Comparison of the Recovered Master Curve and the Target Master Curve in Trust
Frequency Range at Temperature 104 °F 129

94 Linear Fitting of Temperature vs Shifting of the Master Curve log(aT) 130

95 Fitted Master Curve with Three Master Curve Segments Shifted from Other
Temperatures at 39.2 °F 130

96 Fitted Master Curve with Three Master Curve Segments Shifted from Other
Temperatures at 68 °F 131

xiv

97 Fitted Master Curve with Three Master Curve Segments Shifted from Other
Temperatures at 104 °F 131

98 BAKFAA Dynamic Backcalculation Architecture of Software GUI 135

99 Main Page of BAKFAA Dynamic Backcalculation Software GUI 136

100 Create Mesh and FWD File Button Call MeshGenerator Program 137

101 Material Property Page of Software GUI 138

102 Error Warning Information 139

103 Deflection Plotting Page of Software GUI 140

104 Dynamic Backcalculation Page of Software GUI 140

105 Database Involved in the Training Process 142

106 Selection of Initial Starting Point 143

107 Matrix of Database Combinations 145

108 The Training Process with the Selection of the Initial Point 148

xv

LIST OF TABLES

Table Page

1 Consistent Units 27

2 Layer Thicknesses and Properties 30

3 Prony Coefficients 31

4 Target and Seed Values of Variables 43

5 Dynamic Backcalculation Frequency Range and Maximum Error 44

6 Parametric Study Combinations 45

7 Effects and Percent Contributions of Model Parameters on Response Variables 46

8 Backcalculated Layer Moduli 52

9 Parameters that can be Automatically Parsed from ABAQUS Input Files 61

10 Results of First-Order Newton Optimization Performance in Three-Layer System 71

11 Cross-Comparison of Optimization Performance in Three-Layer System with
Unoptimized Seeds 73

12 Final Results of First-Order Newton’s Method on Field-Measured Data with
Vector-Based Problem Definition 76

13 Optimization Performance of BFGS in Three-layer System 79

14 Optimization Performance of BFGS on Field-Measured Data with Different
Improvements 81

15 Optimization Performance of L-BFGS-B in a Three-Layer System 82

16 Optimization Performance of L-BFGS-B on Field-Measured Data for
a Three-Layer System 83

17 Optimization Performance of Powell’s Method in the Three-Layer System 85

18 Optimization Performance of Powell’s Method on Field-Measured Deflections of
a Three-Layer System 86

19 Optimization Performance of Powell’s Method in the Field-Measured Three-Layer
System with Constraints 88

xvi

20 Optimization Performance of Powell on Field-Measured Deflections of
a Three-Layer System with Constraints and Two Seed Sets 89

21 Optimization Performance of the Nelder–Mead Method in the Three-Layer
Pavement Structure 91

22 Optimization Performance of the Nelder–Mead Method on Field-Measured
Deflections of a Three-Layer Pavement Structure 92

23 Initial Range and Optimization Performance of Bayesian Optimizer on
Field-Measured Deflections of a Three-Layer Pavement Structure 95

24 Initial Range and Optimization Performance of Bayesian Optimizer on a Synthetic
Three-Layer Pavement Structure 97

25 Parametric Study of the Bayesian Optimizer’s Final RMSRE on Field-Measured
Deflections of a Three-Layer Pavement Structure 98

26 Optimization Performance of Levenberg-Marquardt in the Synthetic Three-Layer
Pavement Structure 100

27 Optimization Performance of Levenberg-Marquardt on Field-Measured Deflections
of a Three-Layer Pavement Structure 102

28 Optimization Performance of Trust Region in the Synthetic Three-Layer Pavement
Structure 104

29 Optimization Performance of Trust Region on Field Measured Deflections of
a Three-Layer Pavement Structure 105

30 Optimization Performance of the Dogleg in the Synthetic Three-Layer
Pavement Structure 107

31 Optimization Performance of the Dogleg Algorithm on Field-Measured
Deflections of a Three-Layer Pavement Structure 108

32 Optimization Performance of the EKF on Synthetic Deflections of a Three-Layer
Pavement Structure 112

33 Optimization Performance of Q Learning Optimizer on Field-Measured Deflections 117

34 Optimization Performance of Ensemble Learning on Alabama Field-Measured Data 122

35 Recovered Variables from All Optimizers for Synthetic Three-Layer System 124

36 Comparison of the Variables from the Optimizers vs the Variables from the
Fitted Master Curves at Three Temperatures 132

37 Summary of Optimization Methods and Their Properties 133

xvii

LIST OF ACRONYMS

2D Two-dimensional
3D Three-dimensional
AASHTO American Association of State Highway and Transportation Officials
AC Asphalt concrete
AI Artificial intelligence
ANN Artificial neural network
API Application programming interface
AWS Amazon Web Services
B Boeing
BFGS Broyden–Fletcher–Goldfarb–Shanno
CAD Computer-aided design
CC Construction Cycle
COM Component object model
COO Coordinate list
COV Coefficient of variation
CSC Compressed sparse column
CSR Compressed sparse row
CSV Comma-separated values
DFP Davidon–Fletcher–Powell
DynaBAKFAA BAKFAA Dynamic backcalculation
EI Expected improvement
EKF Extended Kalman filter
FAA Federal Aviation Administration
FE Finite element
FWD Falling weight deflectometer
GUI Graphical user interface
HHT Hilber-Hughes-Taylor method
HWD Heavy weight deflectometer
ISU Iowa State University
JSON JavaScript Object Notation
L-BFGS-B Limited-memory BFGS with bound constraints
LET Linear elastic theory
LFS Low-strength subgrade flexible pavement with a stabilized base
LTPP Long-term pavement performance
LVE Linear viscoelastic
MSU Michigan State University
NAPTF National Airport Pavement Test Facility
NN Neural network
nnz Non-zero elements
nr Number of rows
OLE Object Linking and Embedding
POI Probability of improvement
RMSRE Root-mean-square relative error
SDK Software Development Kit
SGD Stochastic Gradient Descent

xviii

SR1 Symmetric rank 1
SVD Singular-value decomposition
TTSP time-temperature superposition principle
UCB Upper confidence bound
UNR University of Nevada, Reno

xix

EXECUTIVE SUMMARY

The Heavy Weight Deflectometer (HWD)/Falling Weight Deflectometer (FWD) is a
nondestructive tool typically used for assessing pavement conditions. An impulse load,
simulating the effects of a moving wheel, is applied to the pavement surface, and the resulting
surface deflections are collected. Pavement variables, such as moduli, are then determined
through a method known as backcalculation. This process employs a forward model to compute
pavement surface deflections and an optimization model to progressively minimize the
differences between the measured and computed deflections.

Presently, the Federal Aviation Administration (FAA) relies on linear elastic theory (LET) and
static analysis within its BAKFAA software to estimate layer moduli for both flexible and rigid
pavements. However, static analysis has limitations, particularly when dealing with thick and
stiff airfield pavement structures.

To address these limitations, a finite element (FE) model was developed to incorporate the
subgrade’s damping behavior, which is a key consideration given the short duration for the FWD
impulse load. This dynamic model facilitated the backcalculation of layer moduli for various
pavement structures constructed over the same subgrade at the FAA National Airport Pavement
Test Facility (NAPTF). The model is also validated by comparing the calculated responses,
including data from pressure cells, strain gauges, and multi-depth deflectometers, with the
respective measured responses during FAA Construction Cycle (CC)-1 tests. In summary,
dynamic backcalculation emerges as the preferred approach over static backcalculation due to its
ability to account for inertial effects, viscoelastic behavior of the asphalt concrete (AC) layer,
and material damping.

In this project, an FE tool known as PULSE_FE is developed that can assess the responses of
multilayer pavement structures under static or dynamic impulse loading with linear elastic and
viscoelastic isotropic materials. PULSE_FE was validated against the ABAQUS FE, yielding
identical results within 1 to 3 percent of the time ABAQUS typically needs. This considerable
improvement in computation time marks a significant milestone, rendering dynamic
backcalculation a feasible approach.

The dynamic backcalculation process was successfully applied to a CC-9 flexible test item,
yielding reliable layer parameters. A comprehensive parametric study was conducted, involving
15,552 pavement structures through FE modeling, resulting in a preliminary list of key FWD
parameters for the backcalculation process.

An optimization framework was developed to streamline the backcalculation procedure. The
framework integrates pavement structure modeling, preprocessing, FE modeling, and analysis,
enabling the direct retrieval of calculated parameters without manual intervention. Multiple
optimizers, including variants of Newton-Raphson, Quasi-Newton, Powell, Nelder–Mead,
Bayesian, and Kalman, were implemented and evaluated within this optimization framework.
Constrained optimization techniques were employed to enhance the generation of practical
solutions. Experimental evaluations, conducted using both synthetic and field measured data,
provided strong evidence of the effectiveness of these optimization methods and the reliable
recovery of pavement variables through this approach.

xx

Additionally, a user-friendly graphical user interface (GUI) program for the BAKFAA Dynamic
Backcalculation (DynaBAKFAA) software was developed. This software allows users to
perform a range of tasks, including generating a mesh for the pavement structure domain,
creating FWD input files, inputting and editing material properties for each pavement layer,
conducting forward analyses to determine pavement responses at various locations within the
structure, and performing dynamic backcalculation using a variety of optimizers to ascertain
pavement variables.

In summary, this work has led to the development of a competent FE module, an advanced
dynamic backcalculation process, and an automated optimization framework. These
advancements are expected to enhance pavement assessment and analysis, with the user-friendly
GUI program further facilitating the adoption of these techniques in practical applications.

1

1. INTRODUCTION

The heavy weight deflectometer (HWD)/falling weight deflectometer (FWD) is a nondestructive
pavement evaluation device commonly used to assess pavement condition. It operates by
applying a short-duration impulse load (simulating a moving wheel load) to the pavement
surface and measuring the corresponding deflections. The pavement variables (e.g., moduli) are
then determined through a process called backcalculation, using a forward model to calculate the
deflections and an optimization model to iteratively improve the variables. A reliable
backcalculation of the layer variables using FWD data is critical for the structural evaluation of
pavements.

The Federal Aviation Administration (FAA) currently uses the linear elastic theory (LET), which
is based on static analysis in its BAKFAA (2023) software for the backcalculation of layer
moduli for flexible and rigid pavements. Static analysis presents numerous constraints during the
backcalculation process, particularly for airports where rigid or thick and stiff flexible pavement
structures are prevalent. In a previous FAA study, researchers developed a simple and robust
finite element (FE) model based on dynamic analysis to address the limitations of existing
models. They also properly incorporated the subgrade’s damping behavior, which had to be
considered due to the short FWD impulse load (Bazi, Mansour, Sebaaly, & Hajj, 2018; Bazi,
Gagnon, Sebaaly, & Ullidtz, 2020). The model was used at the FAA National Airport Pavement
Test Facility (NAPTF) for the backcalculation of layer moduli for flexible and rigid pavement
structures built over the same subgrade. The new model’s backcalculation generated reasonable
layer moduli that aligned with the type of material in each layer, and, most importantly, it
yielded nearly identical layer moduli for the same subgrade material under various pavement
structures and types. The generated layer variables (including moduli) were validated by
comparing the measured responses from the FAA Construction Cycle (CC)-1 test items with
responses calculated using three-dimensional (3D) FE models under simulated Boeing (B)747
and B777 moving wheel loads (Bazi, Mansour, Sebaaly, Ji, & Garg, 2019). The measured
responses, which included data from pressure cells, strain gauges, and multi-depth
deflectometers, closely matched the calculated responses.

In summary, dynamic backcalculation is recommended over static backcalculation because it
enables the consideration of inertial effects, the viscoelastic behavior of the asphalt concrete
(AC) layer, and the material damping.

As part of the current project, the research team is developing a standalone FE module
(PULSE_FE) based on dynamic analysis and evaluating different optimization techniques for
upgrading the BAKFAA (2023) software. The PULSE_FE has static and dynamic modeling
capabilities along with linear elastic and viscoelastic isotropic materials. The FE module is
introduced and compared to the commercial ABAQUS FE software (ABAQUS, 2019). The
PULSE_FE effectiveness and efficiency are demonstrated by producing identical results to
ABAQUS in only 1 to 3 percent the runtime that ABAQUS takes. The improvement in the
calculation time is a significant achievement, making dynamic backcalculation feasible.

Furthermore, the update to the dynamic backcalculation involves (1) attempting to predict the
AC layer master curve using synthetic FWD data, (2) assessing a CC-9 flexible pavement test
item, and (3) conducting a parametric study to determine the most significant FWD parameters

2

for use in the dynamic backcalculation. The analyses indicate that predicting the master curve is
challenging, whereas conducting the dynamic backcalculation is feasible and capable of
generating reliable results. The analysis of the CC-9 test item reveals that unbound materials,
including the aggregate base and subgrade layers, exhibit mild stress-softening behavior that
require evaluation through backcalculation at various FWD load levels. It is noteworthy that the
stress sensitivity obtained from backcalculation is not as pronounced as the material non-linearity
observed in laboratory testing. Previous research has demonstrated that the confinement effect
resulting from the stiffness of the layers above an unbound layer significantly influences that
layer and should undergo further evaluation, potentially being considered in pavement analysis
procedures (Bazi, Saboundjian, Bou Assi, & Diab, 2020).

The remaining sections of the report are structured as follows: Section 2 explains the theoretical
background of FE modeling, with a focus on the details of the axisymmetric case. Section 3
provides an overview of the FE module, covering topics such as the mesh generator, matrix
storage, and a comparison between PULSE_FE and ABAQUS. Section 4 showcases the
improvements in dynamic backcalculation using both simulated and real FWD data. Section 5
describes the development of an Optimization Technique. Section 6 offers a summary of the
BAKFAA Dynamic Backcalculation (DynaBAKFAA) deliverable. Section 7 details the
established database for the PULSE_FE program. Section 8 presents the summary and
conclusions, and Section 9 contains the list of references.

2. FINITE ELEMENT METHOD

The FE method operates on the fundamental concept of dividing a continuum into a finite
number of smaller regions known as finite elements. These elements must neither overlap nor
have gaps between them. Each element is characterized by a set of key points referred to as
nodes, which govern the element’s behavior. Typically, these elements exhibit simpler
geometries, load conditions, boundary conditions, and so on compared to the original continuum.
This simplification ensures that stresses and displacements within each element vary in a
monotonous manner. Consequently, deformation within each element can be approximated using
displacement functions. By establishing dependencies between displacements or stresses at any
point within an element and those at its nodes, a finite set of differential equations of motion can
be formulated for these nodes. This approach allows users to transform a problem with an
infinite number of degrees of freedom into one with a finite number, streamlining the solution
process (Qu, 2004).

2.1 MECHANICAL RESPONSE OF SOLIDS AND STRUCTURES TO EXTERNAL
FORCES

Loads, or external forces, subject solids and structures to stress, resulting in nonuniform stresses
and measurable strains or even observed deformation/displacement. Solid or structural
mechanics establish relationships among stresses, strains, displacements, and forces, under
proper boundary conditions for solids and structures. These relationships are crucial for
modeling, simulating, and designing engineered structural systems (Liu & Quek, 2013).
Forces can be static or dynamic. Static forces concern solids and structures under static loads,
while dynamic forces induce vibrations with time-dependent stress, strain, and displacement.

3

Dynamics principles and theories apply in such cases. Statics can be derived as a special case of
dynamics by omitting dynamic terms from the general dynamic equations (Liu & Quek, 2013).

2.2 THREE-DIMENSIONAL SOLIDS

2.2.1 Displacement Vector and Motion in 3D Solids

A point’s motion in a 3D solid (Figure 1) is determined by a displacement vector 𝑼𝑼 comprising
three components:

𝑼𝑼 = [𝑢𝑢, 𝑣𝑣,𝑤𝑤]𝑇𝑇 (1)

The displacements of the point in the Cartesian axe’s directions x, y, and z are represented by u,
v, and w, respectively.

Figure 1. Displacements and Loads for a 3D Solid (Oñate, 2009)

2.2.2 Strain Components and Their Mathematical Formulation in 3D Solids

Strain represents the change in displacements per unit length, and, as such, the strain components
in a 3D solid are determined by calculating derivatives of the displacements. The strain field is
defined by six strain components (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑦𝑦, 𝜀𝜀𝑧𝑧, 𝛾𝛾𝑥𝑥𝑥𝑥, 𝛾𝛾𝑥𝑥𝑥𝑥, and 𝛾𝛾𝑦𝑦𝑦𝑦), forming a strain vector 𝜀𝜀.

𝜀𝜀 = �𝜀𝜀𝑥𝑥𝑥𝑥, 𝜀𝜀𝑦𝑦𝑦𝑦, 𝜀𝜀𝑧𝑧𝑧𝑧 ,𝛾𝛾𝑦𝑦𝑦𝑦 ,𝛾𝛾𝑥𝑥𝑥𝑥 ,𝛾𝛾𝑥𝑥𝑥𝑥�
𝑇𝑇

(2)

𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜀𝜀𝑧𝑧𝑧𝑧 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛾𝛾𝑥𝑥𝑥𝑥 = 2𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝛾𝛾𝑥𝑥𝑥𝑥 = 2𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛾𝛾𝑦𝑦𝑦𝑦 = 2𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

4

where 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑦𝑦 and 𝜀𝜀𝑧𝑧 are the normal strains, and 𝛾𝛾𝑥𝑥𝑥𝑥, 𝛾𝛾𝑥𝑥𝑥𝑥, and 𝛾𝛾𝑦𝑦𝑦𝑦 denote the tangential or shear
strains. It is important to note that the engineering notation of 𝛾𝛾𝑖𝑖𝑖𝑖, referred to as engineering
shear strain, is used instead of the tensor notation of 𝜀𝜀𝑖𝑖𝑖𝑖 (=

𝛾𝛾𝑖𝑖𝑖𝑖
2

) for the shear strain components in
the vector form of strains. This distinction arises because tensors are mathematical entities
subject to specific rules governing their transformation between coordinate systems.

2.2.3 Stress Components and Stress Tensors in 3D Solids

In a 3D solid, stress components are represented on the surface of an infinitesimal cubic volume.
Each surface features one normal stress component and two shear stress components. The stress
designation employs subscripts, with the first subscript indicating the acting surface, and the
second subscript indicating the stress direction.

Six independent stress components exist at a point within 3D solids, as depicted in Figure 2.
These stress components are termed stress tensors because they adhere to the rules of coordinate
transformation for tensors and can be expressed in vector form, as shown in Equation 3:

𝝈𝝈 = �𝜎𝜎𝑥𝑥𝑥𝑥,𝜎𝜎𝑦𝑦𝑦𝑦,𝜎𝜎𝑧𝑧𝑧𝑧 , 𝜏𝜏𝑦𝑦𝑦𝑦 , 𝜏𝜏𝑥𝑥𝑥𝑥 , 𝜏𝜏𝑥𝑥𝑥𝑥�
𝑇𝑇
 (3)

In this equation, 𝜎𝜎𝑥𝑥 (𝜎𝜎𝑥𝑥𝑥𝑥), 𝜎𝜎𝑦𝑦 �𝜎𝜎𝑦𝑦𝑦𝑦�, and 𝜎𝜎𝑧𝑧 (𝜎𝜎𝑧𝑧𝑧𝑧) represent the normal stresses, and 𝜏𝜏𝑥𝑥𝑥𝑥, 𝜏𝜏𝑥𝑥𝑥𝑥, and
𝜏𝜏𝑦𝑦𝑦𝑦 denote the tangential or shear stresses. The shear equivalence relations (𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑗𝑗𝑗𝑗) are
validated through the equilibrium state, considering the moments of forces about the central axes
of the cube.

Figure 2. Stresses in a 3D Solid Element (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020)

2.2.4 Stress-Strain Relationship

Hooke’s law, a constitutive equation, defines the relationship between stress and strain in a
material. The following matrix form provides the generalized Hooke’s law for 3D anisotropic
materials, as shown in Equation 4:

5

𝝈𝝈 = 𝑫𝑫𝜀𝜀 (4)

In this equation, D represents the 6×6 elasticity matrix of material constants. The constitutive
equation is written explicitly as:

⎩
⎪
⎨

⎪
⎧
𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦
𝜎𝜎𝑧𝑧𝑧𝑧
𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐷𝐷11
⬚
⬚
⬚
⬚
𝑠𝑠𝑠𝑠.

𝐷𝐷12
𝐷𝐷22
⬚
⬚
⬚
⬚

𝐷𝐷13
𝐷𝐷23
𝐷𝐷33
⬚
⬚
⬚

𝐷𝐷14
𝐷𝐷24
𝐷𝐷34
𝐷𝐷44
⬚
⬚

𝐷𝐷15
𝐷𝐷25
𝐷𝐷35
𝐷𝐷45
𝐷𝐷55
⬚

𝐷𝐷16
𝐷𝐷26
𝐷𝐷36
𝐷𝐷46
𝐷𝐷56
𝐷𝐷66⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝑧𝑧𝑧𝑧
𝛾𝛾𝑦𝑦𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝛾𝛾𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

 (5)

For a fully anisotropic material, there are 21 independent material constants 𝐷𝐷𝑖𝑖𝑖𝑖 (since 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑗𝑗𝑗𝑗).
For linear elastic isotropic materials, D is reduced to:

𝑫𝑫 = 𝐸𝐸𝑫𝑫� = 𝐸𝐸

⎣
⎢
⎢
⎢
⎢
⎡
𝐷𝐷11
⬚
⬚
⬚
⬚
𝑠𝑠𝑠𝑠.

𝐷𝐷12
𝐷𝐷11
⬚
⬚
⬚
⬚

𝐷𝐷12
𝐷𝐷12
𝐷𝐷11
⬚
⬚
⬚

0
0
0
𝐷𝐷44
⬚
⬚

0
0
0
0
𝐷𝐷44
⬚

0
0
0
0
0
𝐷𝐷44⎦

⎥
⎥
⎥
⎥
⎤

 (6)

𝐷𝐷11 = (1−𝜇𝜇)
(1−2𝜇𝜇)(1+𝜇𝜇) 𝐷𝐷12 = 𝜇𝜇

(1−2𝜇𝜇)(1+𝜇𝜇) 𝐷𝐷44 = 1
2(1+𝜇𝜇)

where E is the Young’s modulus, µ is the Poisson’s ratio, G is the shear modulus, and 𝑫𝑫� is the
dimensionless elasticity matrix. There are two independent constants among E, µ, and G. Given
any two of the three constants, the other one is calculated using the following equation:

𝐺𝐺 = 𝐸𝐸
2(1+𝜇𝜇) (7)

The inverse of the elasticity matrix D is referred to as the flexibility or compliance matrix, which
is defined differently for isotropic, orthotropic, and anisotropic material. For isotropic materials,
D-1 matrix is given in the following form:

𝑫𝑫−𝟏𝟏 = 1
𝐸𝐸

⎣
⎢
⎢
⎢
⎢
⎡

1
⬚
⬚
⬚
⬚
𝑠𝑠𝑠𝑠.

−𝜇𝜇
1
⬚
⬚
⬚
⬚

 −𝜇𝜇
 −𝜇𝜇
 1
⬚
⬚
⬚

0
0
0

2(1 + 𝜇𝜇)
⬚
⬚

0
0
0
0

2(1 + 𝜇𝜇)
⬚

0
0
0
0
0

2(1 + 𝜇𝜇)⎦
⎥
⎥
⎥
⎥
⎤

 (8)

6

2.3 AXISYMMETRIC MODELING FOR SIMPLIFIED ANALYSIS OF 3D SYMMETRIC
PROBLEMS

When dealing with a 3D problem characterized by symmetric geometry, loadings, boundary
conditions, and materials with respect to an axis, one resolves it as an axisymmetric problem
(Figure 3) by employing two-dimensional (2D) finite elements. Typically, cylindrical
coordinates (𝑟𝑟, 𝜃𝜃, 𝑧𝑧) are used, where 𝑟𝑟 denotes the radial direction from the axis of rotation, 𝑧𝑧
signifies the direction along the axis of rotation, and 𝜃𝜃 represents the circumferential direction
(Hutton, 2004). In this scenario, displacement remains unaffected by the tangential coordinate θ,
resulting in a stress analysis that is mathematically 2D, dependent on radial and axial
coordinates, even though the physical problem is 3D.

For the analysis of pavement structures under FWD loading, it is best to formulate them using
axisymmetric models. This approach simplifies and accelerates the analysis compared to
comprehensive 3D analyses. It must be stated that when identical input parameters are applied,
the 2D axisymmetric and 3D models yield identical results.

Figure 3. Axisymmetric Pavement Problem under FWD Loading (Bazi, Gagnon, Sebaaly, &

Ullidtz, 2020)

2.3.1 Radial and Axial Displacement Field

The radial (𝑢𝑢) and axial (𝑤𝑤) displacements define the movement of a point in an axisymmetric
solid (Figure 4), with the following displacement vector 𝑼𝑼:

𝑼𝑼 = [𝑢𝑢,𝑤𝑤]𝑇𝑇 (9)

7

Figure 4. Axisymmetric Solid (Oñate, 2009)

2.3.2 Strain Analysis in Axisymmetric Solids with Symmetrical Displacements

Because of the symmetry in geometry, material properties, boundary conditions, and loads about
the axis of symmetry, the displacements 𝑢𝑢 and 𝑤𝑤 become independent of the circumferential
coordinate 𝜃𝜃. Consequently, the tangential strains 𝛾𝛾𝑟𝑟𝑟𝑟 and 𝛾𝛾𝑧𝑧𝑧𝑧 become zero.

Points located on a circumference of radius 𝑟𝑟 experience movement, due to the axial
deformation, to a circumference of radius 𝑟𝑟 + 𝑢𝑢. This results in a circumferential strain, defined
as the relative elongation between these two circumferences (Figure 5).

𝜀𝜀𝜃𝜃 = 2𝜋𝜋(𝑟𝑟+𝑢𝑢)−2𝜋𝜋𝜋𝜋

2𝜋𝜋𝜋𝜋
= 𝑢𝑢

𝑟𝑟
 (10)

Figure 5. Derivation of the Circumferential (Hoop) Strain 𝜺𝜺𝜽𝜽 (Oñate, 2009)

The radial, axial, and shear strains are obtained by derivatives of the displacements, as illustrated
in Figure 6. The strain vector 𝜀𝜀 reduces to:

8

𝜀𝜀 = [𝜀𝜀𝑟𝑟 , 𝜀𝜀𝑧𝑧 , 𝜀𝜀𝜃𝜃, 𝛾𝛾𝑟𝑟𝑟𝑟]𝑇𝑇 (11)

𝜀𝜀𝑟𝑟 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜀𝜀𝑧𝑧 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜀𝜀𝜃𝜃 = 𝑢𝑢
𝑟𝑟
 𝛾𝛾𝑟𝑟𝑟𝑟 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

where 𝜀𝜀𝑟𝑟, 𝜀𝜀𝑧𝑧, and 𝜀𝜀𝜃𝜃 represent the normal strains (radial, axial, and circumferential or hoop,
respectively), and 𝛾𝛾𝑟𝑟𝑟𝑟 signifies the tangential or shear strain.

Figure 6. Derivation of the Radial, Axial, and Shear Strains
(Bazi, Gagnon, Sebaaly, & Ullidtz, 2020)

2.3.3 Vector Representation of Stresses and Their Components

The stresses are written in a vector form:

𝝈𝝈 = [𝜎𝜎𝑟𝑟 ,𝜎𝜎𝑧𝑧 ,𝜎𝜎𝜃𝜃 , 𝜏𝜏𝑟𝑟𝑟𝑟]𝑇𝑇 (12)

In this representation, 𝜎𝜎𝑟𝑟, 𝜎𝜎𝑧𝑧, and 𝜎𝜎𝜃𝜃 denote the normal radial, axial, and circumferential stresses,
respectively. As shown in Figure 7, 𝜏𝜏𝑟𝑟𝑟𝑟 represents the tangential or shear stress.

9

Figure 7. Stresses Acting on Differential Volume of Axisymmetric Solid (Oñate, 2009)

2.3.4 Stress-Strain Relationship

The elasticity matrix, 𝑫𝑫, for a 2D axisymmetric problem is derived from that of a 3D solid by
imposing the conditions of 𝛾𝛾𝑟𝑟𝑟𝑟 = 𝛾𝛾𝑧𝑧𝑧𝑧 = 0 and by assuming that the shear strain, 𝛾𝛾𝑟𝑟𝑟𝑟, is not
coupled with the hoop stress, 𝜎𝜎𝜃𝜃. For a 2D axisymmetric isotropic material, the matrix of elastic
constants is given as:

𝑫𝑫 = 𝐸𝐸𝑫𝑫� = 𝐸𝐸

⎣
⎢
⎢
⎡
𝐷𝐷11 𝐷𝐷12 𝐷𝐷12 0
⬚ 𝐷𝐷11 𝐷𝐷12 0
⬚ ⬚ 𝐷𝐷11 0
𝑠𝑠𝑠𝑠. ⬚ ⬚ 𝐷𝐷44⎦

⎥
⎥
⎤
 (13)

𝐷𝐷11 = (1−𝜇𝜇)
(1−2𝜇𝜇)(1+𝜇𝜇) 𝐷𝐷12 = 𝜇𝜇

(1−2𝜇𝜇)(1+𝜇𝜇) 𝐷𝐷44 = 1
2(1+𝜇𝜇)

2.4 LINEAR VISCOELASTIC MATERIAL BEHAVIOR AND RHEOLOGICAL MODELS

Viscoelastic materials are modeled to determine their stress and strain interactions, as well as
their temporal dependencies. Their response depends not only on the deformation but also on the
rate of deformation when loaded. The material also experiences relaxation, in which the stress
gradually decreases when deformation is constant, or creep, in which the deformation gradually
increases when the load is kept constant.

Viscoelastic behavior comprises elastic and viscous components modeled as linear combinations
of springs and dashpots, respectively. The elastic spring is called Hooke element, while the
dashpot is referred to as the Newton element (see Figure 8).

The elastic material constant, denoted as 𝐸𝐸, provides the linear relationship for the Hooke
element between elastic strain, 𝜀𝜀𝑒𝑒, and elastic stress, 𝜎𝜎𝑒𝑒 .

𝜎𝜎𝑒𝑒 = 𝐸𝐸𝜀𝜀𝑒𝑒 (14)

10

The viscous stress 𝜎𝜎𝑣𝑣 of the Newton element relates to the strain rate 𝜀𝜀̇𝑣𝑣 using the coefficient of
viscosity 𝜂𝜂.

𝜎𝜎𝑣𝑣 = 𝜂𝜂 𝑑𝑑𝜀𝜀𝑣𝑣

𝑑𝑑𝑑𝑑
= 𝜂𝜂𝜀𝜀̇𝑣𝑣 (15)

The viscosity 𝜂𝜂 can be expressed in terms of the elastic constant 𝐸𝐸 by introducing the relaxation
time 𝜏𝜏.

Figure 8. Hooke, Newton, Maxwell, and Kelvin-Voigt Elements (from left) (Bazi, Gagnon,
Sebaaly, & Ullidtz, 2020)

Combining the Hooke and Newton elements in series yields the Maxwell element, while their
parallel combination results in the Kelvin-Voigt model (Figure 8). The Maxwell model can
predict stress relaxation in materials, whereas the Kelvin-Voigt model can predict creep.
More complex models can be constructed using different combinations of springs and dashpots
to better fit experimental data from creep, relaxation, or frequency-dependent tests. A complex
viscoelastic rheological model typically takes the form of the generalized Maxwell model or the
generalized Kelvin chain.

2.4.1 Viscoelastic Modeling and Generalized Maxwell Elements

In a Maxwell element, the total strain 𝜀𝜀 is the sum of an elastic, 𝜀𝜀𝑒𝑒, and a viscous 𝜀𝜀𝑣𝑣 component,
while the stress remains consistent in both rheological elements.

𝜀𝜀 = 𝜀𝜀𝑒𝑒 + 𝜀𝜀𝑣𝑣 (16)
𝜎𝜎 = 𝐸𝐸𝜀𝜀𝑒𝑒 = 𝜂𝜂𝜀𝜀̇𝑣𝑣 (17)

By differentiating Equation 16 with respect to time and applying the constitutive relations for
both the spring and dashpot, the differential equation for the Maxwell model is derived:

𝜀𝜀̇ = 𝜀𝜀̇𝑒𝑒 + 𝜀𝜀̇𝑣𝑣 = 𝜎̇𝜎
𝐸𝐸

+ 𝜎𝜎
𝜂𝜂
 (18)

Solving this equation in a relaxation experiment (Figure 9) yields the following:

𝜎𝜎(𝑡𝑡)
𝜀𝜀0

= 𝐸𝐸𝑒𝑒−
𝑡𝑡
𝜏𝜏 = 𝑅𝑅(𝑡𝑡) (19)

11

where 𝜏𝜏 = 𝜂𝜂
𝐸𝐸
 represents the relaxation time, i.e., the time needed to reduce the stress to 𝑒𝑒−1 of its

initial value after imposing the strain, and 𝑅𝑅(𝑡𝑡) is the relaxation function.

Figure 9. Relaxation Test with Maxwell Element: Strain History (Left) and Resulting Stress
Response (Right) (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020)

The general solution of the differential equation of the Maxwell element with arbitrary strain
histories is obtained through the convolution integral:

𝜎𝜎(𝑡𝑡) = 𝐸𝐸 ∫ 𝑒𝑒−
𝑡𝑡−𝑠𝑠
𝜏𝜏

𝑡𝑡
0 𝜀𝜀̇𝑑𝑑𝑑𝑑 = ∫ 𝑅𝑅(𝑡𝑡 − 𝑠𝑠)𝜀𝜀̇𝑡𝑡

0 𝑑𝑑𝑑𝑑 (20)

This integral is known as the Hereditary Integral and is closely related to the Boltzmann
Superposition Principle for linear isotropic viscoelastic materials.

While the basic Maxwell model qualitatively captures the material behavior, it might fall short in
providing a quantitative representation. To address this, Generalized Maxwell models are
systematically developed to improve accuracy (see Figure 10). The Generalized Maxwell model,
also known as the Wiechert model, consists of a finite number of separate Maxwell elements
arranged in parallel with an elastic Hooke element. This model considers relaxation that occurs
at multiple times, not just a single time.

The relaxation function, 𝑅𝑅(𝑡𝑡), can be expressed in terms of a series of negative exponentials,
forming the Prony series that mathematically characterizes the Generalized Maxwell model:

𝑅𝑅(𝑡𝑡) = 𝐸𝐸∞ + ∑ 𝐸𝐸𝑗𝑗𝑒𝑒
− 𝑡𝑡
𝜏𝜏𝑗𝑗𝑁𝑁

𝑗𝑗=1 (21)

Here, 𝐸𝐸∞ represents the long-term equilibrium modulus; 𝐸𝐸𝑗𝑗 and 𝜏𝜏𝑗𝑗 denote the elastic stiffness and
viscous relaxation time associated with each element in the generalized Maxwell model,
respectively; and 𝑁𝑁 represents the number of spring-dashpot Maxwell elements.

12

Figure 10. Generalized Maxwell Model (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020)

At time 𝑡𝑡 = 0, the instantaneous modulus, 𝐸𝐸0, can be determined as:

𝐸𝐸0 = 𝐸𝐸∞ + ∑ 𝐸𝐸𝑗𝑗𝑁𝑁
𝑗𝑗=1 (22)

where 𝐸𝐸∞ = 𝐸𝐸0�1 − ∑ 𝛼𝛼𝑗𝑗𝑁𝑁

𝑗𝑗=1 �, and 𝛼𝛼𝑗𝑗 = 𝐸𝐸𝑗𝑗
𝐸𝐸0

 represents the relative modulus of term 𝑗𝑗.

The Prony series representation of viscoelastic material behavior is incorporated into nearly
every state-of-the-art FE software, including ABAQUS, and plays a vital role in the
characterization of viscoelastic materials.

2.4.2 Numerical Model Development and Viscoelastic Stress Decomposition

The development of a numerical model commences with the general integral representation of
linear viscoelasticity, using Equation 20 to decompose the stress into elastic and viscoelastic
components (Kaliske & Rothert, 1997).

𝜎𝜎𝑡𝑡+Δ𝑡𝑡 = 𝜎𝜎∞𝑡𝑡+Δ𝑡𝑡 + ∑ 𝑀𝑀𝑗𝑗𝑡𝑡+Δ𝑡𝑡𝑁𝑁
𝑗𝑗=1 (23)

The equation above is reformulated in the following manner:

𝜎𝜎𝑡𝑡+Δ𝑡𝑡 = 𝑉𝑉𝐷𝐷�𝜀𝜀𝑡𝑡+Δ𝑡𝑡 − 𝑞𝑞𝑡𝑡 (24)

Here, 𝑉𝑉 represents the viscoelastic tangent modulus multiplier, and 𝑞𝑞𝑡𝑡 is a stress vector
dependent on variables known at the start of the time step. 𝑀𝑀𝑗𝑗𝑡𝑡+Δ𝑡𝑡 signifies the internal stress
variables. It is evident that 𝑞𝑞 needs to be incorporated into the right-hand side of the equation of
motion and can be regarded as a pseudo-load vector.

𝑉𝑉 = 𝐸𝐸0�1 − ∑ 𝑂𝑂𝑗𝑗𝑁𝑁
𝑗𝑗=1 � (25)

13

𝑂𝑂𝑗𝑗 = 𝛼𝛼𝑗𝑗
𝜏𝜏𝑗𝑗
Δ𝑡𝑡
�Δ𝑡𝑡
𝜏𝜏𝑗𝑗

+ 𝑒𝑒
−Δ𝑡𝑡𝜏𝜏𝑗𝑗 − 1� (26)

𝑞𝑞𝑡𝑡 = ∑ �𝛼𝛼𝑗𝑗
1−𝑒𝑒

−Δ𝑡𝑡𝜏𝜏𝑗𝑗

Δ𝑡𝑡
𝜏𝜏𝑗𝑗

𝐷𝐷�𝐸𝐸0𝜀𝜀𝑡𝑡 − 𝑒𝑒
−Δ𝑡𝑡𝜏𝜏𝑗𝑗𝑀𝑀𝑗𝑗𝑡𝑡�𝑁𝑁

𝑗𝑗=1 (27)

𝑀𝑀𝑗𝑗𝑡𝑡 = 𝑒𝑒
−Δ𝑡𝑡𝜏𝜏𝑗𝑗𝑀𝑀𝑗𝑗𝑡𝑡−Δ𝑡𝑡 + 𝛼𝛼𝑗𝑗

1−𝑒𝑒
−Δ𝑡𝑡𝜏𝜏𝑗𝑗

Δ𝑡𝑡
𝜏𝜏𝑗𝑗

𝐷𝐷�𝐸𝐸0(𝜀𝜀𝑡𝑡 − 𝜀𝜀𝑡𝑡−Δ𝑡𝑡) (28)

2.5 FINITE ELEMENT FORMULATION FOR LINEAR AXISYMMETRIC TRIANGULAR
ELEMENTS

This section demonstrates the FE formulation for a straightforward linear three-noded
axisymmetric triangular element. It is worth noting that all axisymmetric solid elements exhibit
an annular shape, even though the element integrals are calculated within the 2D section.

2.5.1 Finite Element Mesh Generation and Structured vs Unstructured Meshes

First, discretizing the problem domain involves dividing it into a union of elements, which can
consist of a single type or a combination of different types. This union of elements forms what is
commonly referred to as the FE mesh. The process of creating an FE mesh is often termed mesh
generation (Zienkiewicz, Taylor, & Zhu, 2013).

A mesh with a high degree of ordering, such as a Cartesian grid, is classified as structured, while
a mesh without this level of order is referred to as unstructured. Figure 11 illustrates an example
of 2D structured and unstructured meshes (Woodbury, 2008).

Figure 11. Two-Dimensional Structured (Left) and Unstructured (Right) Meshes (Bazi, Gagnon,
Sebaaly, & Ullidtz, 2020)

Most unstructured mesh generation methods are designed to create triangular elements in 2D and
tetrahedral elements in 3D (referred to as simplex forms). These simplex forms offer a
straightforward discretization of 2D and 3D domains of varying shapes, especially when meshes
with different element sizes in various regions of the domain are needed. Numerous automatic
unstructured mesh generation algorithms are available, with the most widely used algorithms

14

being based on one or a combination of the three fundamentally distinctive methods
(Zienkiewicz, Taylor, & Zhu, 2013), which are: (1) the Delaunay triangulation method, (2) the
advancing-front method, and (3) the tree methods (the finite quadtree method in 2D and the finite
octree method in 3D).

2.5.1.1 Selection of 2D Elements for Axisymmetric Analysis

In axisymmetric cases, any 2D element can be used. Figure 12 illustrates the most common
linear and higher-order (quadratic) triangular and quadrilateral elements.

Figure 12. Linear and Quadratic Triangular and Quadrilateral Elements
(Bazi, Gagnon, Sebaaly, & Ullidtz, 2020)

2.5.1.2 Modeling Infinite Media in FE Analysis

In generating an FE model, three methods are commonly employed to replicate infinite media.
These methods are: (1) the far boundary, (2) the infinite element boundary, and (3) the viscous
damping boundary.

The far boundary method, as the name implies, involves shifting the boundary a considerable
distance away from the center of the structure until the boundary’s influence becomes negligible.
The infinite element boundary method emulates unbounded soil boundaries (see Figure 13) by
employing specialized shape functions, which cause the nodes on the boundary side to extend
infinitely (Cook, 1995).

The viscous damping boundary method uses a series of viscous dampers to absorb the radiating
wave energy.

(a) (b) (c) (d)

15

Figure 13. Infinite Elements Attached to Boundary of Standard FE Mesh
(Bazi, Gagnon, Sebaaly, & Ullidtz, 2020)

2.5.2 Discretization of the Displacement Field

Figure 14 displays an axisymmetric linear triangular element. This element comprises three
nodes, each with two degrees of freedom per node (𝑢𝑢𝑖𝑖 and 𝑤𝑤𝑖𝑖).

The element adopts linear displacement functions, as defined in Logan (2017):

𝑢𝑢(𝑟𝑟, 𝑧𝑧) = 𝑎𝑎1 + 𝑎𝑎2𝑟𝑟 + 𝑎𝑎3𝑧𝑧 (29)
𝑤𝑤(𝑟𝑟, 𝑧𝑧) = 𝑎𝑎4 + 𝑎𝑎5𝑟𝑟 + 𝑎𝑎6𝑧𝑧 (30)

Figure 14. Axisymmetric Three-Noded Triangular Element (Oñate, 2009)

The total number of introduced generalized coordinates 𝑎𝑎𝑖𝑖 in the displacement functions matches
the total number of degrees of freedom for the element. The generalized coordinates represent
the displacement amplitudes. The nodal displacements for nodes 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘 are as follows:

16

{𝑑𝑑} = �
{𝑑𝑑𝑖𝑖}
�𝑑𝑑𝑗𝑗�
{𝑑𝑑𝑘𝑘}

� =

⎩
⎪
⎨

⎪
⎧
𝑢𝑢𝑖𝑖
𝑤𝑤𝑖𝑖
𝑢𝑢𝑗𝑗
𝑤𝑤𝑗𝑗
𝑢𝑢𝑘𝑘
𝑤𝑤𝑘𝑘⎭
⎪
⎬

⎪
⎫

 (31)

and 𝑢𝑢 and 𝑤𝑤 evaluated at node 𝑖𝑖 as:

𝑢𝑢(𝑟𝑟𝑖𝑖, 𝑧𝑧𝑖𝑖) = 𝑢𝑢𝑖𝑖 = 𝑎𝑎1 + 𝑎𝑎2𝑟𝑟𝑖𝑖 + 𝑎𝑎3𝑧𝑧𝑖𝑖 (32)
𝑤𝑤(𝑟𝑟𝑖𝑖, 𝑧𝑧𝑖𝑖) = 𝑤𝑤𝑖𝑖 = 𝑎𝑎4 + 𝑎𝑎5𝑟𝑟𝑖𝑖 + 𝑎𝑎6𝑧𝑧𝑖𝑖 (33)

The displacement function is then expressed in a matrix form:

{𝜓𝜓} = �𝑢𝑢𝑤𝑤� = �
𝑎𝑎1 + 𝑎𝑎2𝑟𝑟 + 𝑎𝑎3𝑧𝑧
𝑎𝑎4 + 𝑎𝑎5𝑟𝑟 + 𝑎𝑎6𝑧𝑧

� = �1 𝑟𝑟 𝑧𝑧 0 0 0
0 0 0 1 𝑟𝑟 𝑧𝑧�

⎩
⎪
⎨

⎪
⎧
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4
𝑎𝑎5
𝑎𝑎6⎭
⎪
⎬

⎪
⎫

 (34)

a1 through a6 can be determined by substituting the coordinates of the nodal points in the above
equation, and performing the inversion operations:

�
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = �

1 𝑟𝑟𝑖𝑖 𝑧𝑧𝑖𝑖
1 𝑟𝑟𝑗𝑗 𝑧𝑧𝑗𝑗
1 𝑟𝑟𝑘𝑘 𝑧𝑧𝑘𝑘

�

−1

�
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗
𝑢𝑢𝑘𝑘
� = 1

2𝐴𝐴
�
𝛼𝛼𝑖𝑖 𝛼𝛼𝑗𝑗 𝛼𝛼𝑘𝑘
𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 𝛽𝛽𝑘𝑘
𝛾𝛾𝑖𝑖 𝛾𝛾𝑗𝑗 𝛾𝛾𝑘𝑘

� �
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗
𝑢𝑢𝑘𝑘
� (35)

�
𝑎𝑎4
𝑎𝑎5
𝑎𝑎6
� = �

1 𝑟𝑟𝑖𝑖 𝑧𝑧𝑖𝑖
1 𝑟𝑟𝑗𝑗 𝑧𝑧𝑗𝑗
1 𝑟𝑟𝑘𝑘 𝑧𝑧𝑘𝑘

�

−1

�
𝑤𝑤𝑖𝑖
𝑤𝑤𝑗𝑗
𝑤𝑤𝑘𝑘

� = 1
2𝐴𝐴
�
𝛼𝛼𝑖𝑖 𝛼𝛼𝑗𝑗 𝛼𝛼𝑘𝑘
𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 𝛽𝛽𝑘𝑘
𝛾𝛾𝑖𝑖 𝛾𝛾𝑗𝑗 𝛾𝛾𝑘𝑘

� �
𝑤𝑤𝑖𝑖
𝑤𝑤𝑗𝑗
𝑤𝑤𝑘𝑘

� (36)

 𝛼𝛼𝑖𝑖 = 𝑟𝑟𝑗𝑗𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑗𝑗𝑟𝑟𝑘𝑘 𝛼𝛼𝑗𝑗 = 𝑟𝑟𝑘𝑘𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑘𝑘𝑟𝑟𝑖𝑖 𝛼𝛼𝑘𝑘 = 𝑟𝑟𝑖𝑖𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖𝑟𝑟𝑗𝑗
𝛽𝛽𝑖𝑖 = 𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑘𝑘 𝛽𝛽𝑗𝑗 = 𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑖𝑖 𝛽𝛽𝑘𝑘 = 𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗
𝛾𝛾𝑖𝑖 = 𝑟𝑟𝑘𝑘 − 𝑟𝑟𝑗𝑗 𝛾𝛾𝑗𝑗 = 𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑘𝑘 𝛾𝛾𝑘𝑘 = 𝑟𝑟𝑗𝑗 − 𝑟𝑟𝑖𝑖

Area of triangular element 𝐴𝐴 = 1
2
�
1 𝑟𝑟𝑖𝑖 𝑧𝑧𝑖𝑖
1 𝑟𝑟𝑗𝑗 𝑧𝑧𝑗𝑗
1 𝑟𝑟𝑘𝑘 𝑧𝑧𝑘𝑘

�

The shape functions 𝑁𝑁𝑖𝑖, 𝑁𝑁𝑗𝑗, and 𝑁𝑁𝑘𝑘, commonly referred to as interpolation or blending functions,
depict how the field variable varies within the FE (Hutton, 2004). Figure 15 demonstrates the
shape functions, and they are defined as follows:

17

𝑁𝑁𝑖𝑖 = 1

2𝐴𝐴
(𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑟𝑟 + 𝛾𝛾𝑖𝑖𝑧𝑧) (37)

𝑁𝑁𝑗𝑗 = 1

2𝐴𝐴
�𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑟𝑟 + 𝛾𝛾𝑗𝑗𝑧𝑧� (38)

𝑁𝑁𝑘𝑘 = 1

2𝐴𝐴
(𝛼𝛼𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑟𝑟 + 𝛾𝛾𝑘𝑘𝑧𝑧) (39)

𝑢𝑢(𝑟𝑟, 𝑧𝑧) = 𝑎𝑎1 + 𝑎𝑎2𝑟𝑟 + 𝑎𝑎3𝑧𝑧 = 𝑁𝑁𝑖𝑖𝑢𝑢𝑖𝑖+𝑁𝑁𝑗𝑗𝑢𝑢𝑗𝑗+𝑁𝑁𝑘𝑘𝑢𝑢𝑘𝑘 (40)

𝑤𝑤(𝑟𝑟, 𝑧𝑧) = 𝑎𝑎4 + 𝑎𝑎5𝑟𝑟 + 𝑎𝑎6𝑧𝑧 = 𝑁𝑁𝑖𝑖𝑤𝑤𝑖𝑖+𝑁𝑁𝑗𝑗𝑤𝑤𝑗𝑗+𝑁𝑁𝑘𝑘𝑤𝑤𝑘𝑘 (41)

Figure 15. Shape Functions Ni, Nj, and Nk for Three-Noded Triangular Element (Bazi, Gagnon,

Sebaaly, & Ullidtz, 2020)

The general displacement function is expressed in terms of the shape functions:

{𝜓𝜓} = �𝑢𝑢𝑤𝑤� = �
𝑁𝑁𝑖𝑖 0 𝑁𝑁𝑗𝑗 0 𝑁𝑁𝑘𝑘 0
0 𝑁𝑁𝑖𝑖 0 𝑁𝑁𝑗𝑗 0 𝑁𝑁𝑘𝑘

�

⎩
⎪
⎨

⎪
⎧
𝑢𝑢𝑖𝑖
𝑤𝑤𝑖𝑖
𝑢𝑢𝑗𝑗
𝑤𝑤𝑗𝑗
𝑢𝑢𝑘𝑘
𝑤𝑤𝑘𝑘⎭
⎪
⎬

⎪
⎫

= [𝑁𝑁]{𝑑𝑑} (42)

2.5.3 Discretization of the Strain and Stress Fields

The strain vector is related to the nodal displacements using the gradient matrix, as defined
below:

18

𝜀𝜀 = �

𝜀𝜀𝑟𝑟
𝜀𝜀𝑧𝑧
𝜀𝜀𝜃𝜃
𝛾𝛾𝑟𝑟𝑟𝑟

� =

⎩
⎪
⎨

⎪
⎧

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢
𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⎭
⎪
⎬

⎪
⎫

=

⎩
⎨

⎧
𝑎𝑎2
𝑎𝑎6

𝑎𝑎1
𝑟𝑟

+ 𝑎𝑎2 + 𝑎𝑎3𝑧𝑧
𝑟𝑟

𝑎𝑎3 + 𝑎𝑎5 ⎭
⎬

⎫
=

⎣
⎢
⎢
⎡
0 1 0 0 0 0
0 0 0 0 0 1
1
𝑟𝑟

1 𝑧𝑧
𝑟𝑟

0 0 0
0 0 1 0 1 0⎦

⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4
𝑎𝑎5
𝑎𝑎6⎭
⎪
⎬

⎪
⎫

 (43)

𝜀𝜀 = �

𝜀𝜀𝑟𝑟
𝜀𝜀𝑧𝑧
𝜀𝜀𝜃𝜃
𝛾𝛾𝑟𝑟𝑟𝑟

� = 1
2𝐴𝐴

⎣
⎢
⎢
⎢
⎡

𝛽𝛽𝑖𝑖 0 𝛽𝛽𝑗𝑗 0 𝛽𝛽𝑘𝑘 0
0 𝛾𝛾𝑖𝑖 0 𝛾𝛾𝑗𝑗 0 𝛾𝛾𝑘𝑘

𝛼𝛼𝑖𝑖
𝑟𝑟

+ 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑧𝑧
𝑟𝑟

0 𝛼𝛼𝑗𝑗
𝑟𝑟

+ 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗𝑧𝑧
𝑟𝑟

0 𝛼𝛼𝑘𝑘
𝑟𝑟

+ 𝛽𝛽𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑧𝑧
𝑟𝑟

0
𝛾𝛾𝑖𝑖 𝛽𝛽𝑖𝑖 𝛾𝛾𝑗𝑗 𝛽𝛽𝑗𝑗 𝛾𝛾𝑘𝑘 𝛽𝛽𝑘𝑘⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑢𝑢𝑖𝑖
𝑤𝑤𝑖𝑖
𝑢𝑢𝑗𝑗
𝑤𝑤𝑗𝑗
𝑢𝑢𝑘𝑘
𝑤𝑤𝑘𝑘⎭
⎪
⎬

⎪
⎫

 (44)

𝜀𝜀 = �

𝜀𝜀𝑟𝑟
𝜀𝜀𝑧𝑧
𝜀𝜀𝜃𝜃
𝛾𝛾𝑟𝑟𝑟𝑟

� = �[𝐵𝐵𝑖𝑖]�𝐵𝐵𝑗𝑗�[𝐵𝐵𝑘𝑘]�

⎩
⎪
⎨

⎪
⎧
𝑢𝑢𝑖𝑖
𝑤𝑤𝑖𝑖
𝑢𝑢𝑗𝑗
𝑤𝑤𝑗𝑗
𝑢𝑢𝑘𝑘
𝑤𝑤𝑘𝑘⎭
⎪
⎬

⎪
⎫

= [𝐵𝐵]{𝑑𝑑} (45)

[𝐵𝐵] = �[𝐵𝐵𝑖𝑖]�𝐵𝐵𝑗𝑗�[𝐵𝐵𝑘𝑘]� 𝐵𝐵𝑖𝑖 = 1
2𝐴𝐴

⎣
⎢
⎢
⎢
⎡

𝛽𝛽𝑖𝑖 0
0 𝛾𝛾𝑖𝑖

𝛼𝛼𝑖𝑖
𝑟𝑟

+ 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑧𝑧
𝑟𝑟

0
𝛾𝛾𝑖𝑖 𝛽𝛽𝑖𝑖⎦

⎥
⎥
⎥
⎤

[𝐵𝐵] is called the gradient matrix, and 𝐵𝐵𝑗𝑗 and 𝐵𝐵𝑘𝑘 can be obtained from 𝐵𝐵𝑖𝑖 by replacing the 𝑖𝑖
subscript by 𝑗𝑗 and 𝑘𝑘, respectively. It is important to note that [𝐵𝐵] is a function of 𝑟𝑟 and 𝑧𝑧, also
indicating that 𝜀𝜀𝜃𝜃 is not constant and varies with the polar coordinates.

The stress is then calculated using the following formula, where [𝑫𝑫] is the elasticity matrix, [𝐵𝐵]
is the gradient matrix and {𝑑𝑑} is the nodal displacements vector.

𝝈𝝈 = 𝑫𝑫𝜀𝜀 = [𝑫𝑫][𝐵𝐵]{𝑑𝑑} (46)

2.5.4 Formulation of FE Equations for Dynamic Analysis

Three primary methods exist for deriving the FE equations of a physical system:

(1) The direct method, or direct equilibrium method, commonly applied to structural analysis
problems

(2) Variational methods, which encompass subsets like energy methods and the principle of
virtual work

(3) Weighted residual methods

19

The equations of equilibrium governing the dynamic response of a system of FEs are represented
as follows (Bathe, 2014):

𝑴𝑴𝑼̈𝑼 + 𝑪𝑪𝑼̇𝑼 + 𝑲𝑲𝑲𝑲 = 𝑹𝑹 (47)

Here, 𝑴𝑴, 𝑪𝑪, and 𝑲𝑲 are the mass, damping, and stiffness matrices, respectively. 𝑹𝑹 is the vector of
externally applied loads, and 𝑼̈𝑼, 𝑼̇𝑼, and 𝑼𝑼 are the acceleration, velocity, and displacement vectors
of the FE assembly. The damping matrix is often expressed simply as proportional of the mass
and stiffness matrices, known as proportional damping. The equation can be further expressed
as:

𝑭𝑭𝑰𝑰(𝒕𝒕) + 𝑭𝑭𝑫𝑫(𝒕𝒕) + 𝑭𝑭𝑬𝑬(𝒕𝒕) = 𝑹𝑹(𝒕𝒕) (48)

Where 𝑭𝑭𝑰𝑰(𝒕𝒕) represents the inertia forces, 𝑭𝑭𝑰𝑰(𝒕𝒕) = 𝑴𝑴𝑼̈𝑼; 𝑭𝑭𝑫𝑫(𝒕𝒕) represents the damping forces,
𝑭𝑭𝑫𝑫(𝒕𝒕) = 𝑪𝑪𝑼̇𝑼; and 𝑭𝑭𝑬𝑬(𝒕𝒕) represents the elastic forces, 𝑭𝑭𝑬𝑬(𝒕𝒕) = 𝑲𝑲𝑲𝑲, all of which are time-
dependent. Therefore, in dynamic analysis, static equilibrium at time 𝒕𝒕 is considered,
incorporating the effects of acceleration-dependent inertia forces and velocity-dependent
damping forces. In contrast, static analysis neglects the effects of inertia and damping.

2.5.5 Stiffness Matrix

The element stiffness matrix is calculated as follows:

[𝑘𝑘] = ∭ [𝐵𝐵]𝑇𝑇[𝐷𝐷][𝐵𝐵]𝑑𝑑𝑑𝑑⬚
𝑉𝑉 = 2𝜋𝜋∬ [𝐵𝐵]𝑇𝑇[𝐷𝐷][𝐵𝐵]𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⬚

𝐴𝐴 (49)

2.5.6 Mass Matrix

The element mass matrix is calculated as follows:

[𝑚𝑚] = ∭ 𝜌𝜌[𝑁𝑁]𝑇𝑇[𝑁𝑁]𝑑𝑑𝑑𝑑⬚
𝑉𝑉 = 2𝜋𝜋∬ 𝜌𝜌[𝑁𝑁]𝑇𝑇[𝑁𝑁]𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⬚

𝐴𝐴 (50)

The consistent-mass matrix of order 6×6 for a linear triangular element is given by:

[𝑚𝑚] = 𝜋𝜋𝜋𝜋𝜋𝜋
10

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
4
3
𝑟𝑟1 + 2𝑟̅𝑟 0 2𝑟̅𝑟 − 𝑟𝑟3

3
0 2𝑟̅𝑟 − 𝑟𝑟2

3
0

⬚ 4
3
𝑟𝑟1 + 2𝑟̅𝑟 0 2𝑟̅𝑟 − 𝑟𝑟3

3
0 2𝑟̅𝑟 − 𝑟𝑟2

3

⬚ ⬚ 4
3
𝑟𝑟2 + 2𝑟̅𝑟 0 2𝑟̅𝑟 − 𝑟𝑟1

3
0

⬚ ⬚ ⬚ 4
3
𝑟𝑟2 + 2𝑟̅𝑟 0 2𝑟̅𝑟 − 𝑟𝑟1

3

⬚ ⬚ ⬚ ⬚ 4
3
𝑟𝑟3 + 2𝑟̅𝑟 0

𝑠𝑠𝑠𝑠. ⬚ ⬚ ⬚ ⬚ 4
3
𝑟𝑟3 + 2𝑟̅𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (51)

20

where 𝜌𝜌 is the density; and 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 are the radial coordinates of nodes 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘,
respectively.

𝑟̅𝑟 =
𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟3

3

The lumped matrix, which is a diagonal matrix, is obtained by adding each row of the consistent
matrix onto the diagonal. ABAQUS uses the lumped mass matrix for the first-order triangular
elements, as it gives more accurate results in numerical experiments that calculate the natural
frequencies of simple models.

2.5.7 Damping Matrix

Damping is considered in the form of Rayleigh damping, where the damping matrix is formed as
a linear combination of the mass and the stiffness matrices using the Rayleigh damping
coefficients 𝛼𝛼𝑅𝑅 and 𝛽𝛽𝑅𝑅.

[𝑐𝑐] = 𝛼𝛼𝑅𝑅[𝑚𝑚] + 𝛽𝛽𝑅𝑅[𝑘𝑘] (52)

2.5.8 Surface Forces

The nodal force vector includes the body and surface forces, where the surface force is used to
simulate an FWD load in accordance with the following formula:

{𝑓𝑓𝑠𝑠} = ∬ [𝑁𝑁𝑠𝑠]𝑇𝑇{𝑇𝑇}𝑑𝑑𝑑𝑑⬚
𝑆𝑆 (53)

where [𝑁𝑁𝑠𝑠] denotes the shape function matrix evaluated along the surface where the surface
traction {𝑇𝑇} acts.

The nodal forces for an asymmetric first-order triangular element due to a surface traction are
illustrated in Figure 16 and calculated using the following formulas for a unit pressure:

𝐹𝐹1 = 2𝜋𝜋
6

(𝑟𝑟12 + 𝑟𝑟0𝑟𝑟1 − 2𝑟𝑟02) (54)

𝐹𝐹2 = 2𝜋𝜋

6
(2𝑟𝑟12 − 𝑟𝑟0𝑟𝑟1 − 𝑟𝑟02) (55)

21

Figure 16. Nodal Forces Due to Surface Traction (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020)

2.6 TRANSIENT DYNAMIC ANALYSIS

Two effective procedures for transient dynamic analysis are proposed: (1) direct integration and
(2) mode superposition, commonly used in the frequency domain.

In direct integration, the equations of equilibrium are integrated using a numerical step-by-step
procedure, where the term direct means that prior to the numerical integration, no transformation
of the equations into a different form is carried out. There are two main types of direct
integration method: implicit and explicit. Implicit methods are generally more efficient for a
relatively slow phenomenon, and explicit methods are more efficient for a very fast phenomenon,
such as impact and explosion loadings (Bathe, 2014).
Different direct integration schemes are available, such as the central difference method, the
Houbolt method, the Newmark (1959) integration procedure, and the Bathe method (Bathe,
2014). The central difference and Newmark methods are the most used methods.

In the central difference algorithm, the solutions (displacement, velocity, and acceleration) are
obtained without solving any matrix form of system equations, which is therefore considered an
explicit method. The time marching in explicit methods is therefore extremely fast, and the
coding is also very straightforward. It is particularly suited for simulating highly nonlinear, large
deformation, contact, and extremely fast events of mechanics. The central difference method,
like most explicit methods, is conditionally stable, meaning that the time step ∆𝑡𝑡 must be lower
than a critical time step in order not to make the computed solution unstable.

Newmark’s method is the most widely used implicit algorithm. The procedure involves matrix
inversion that is analogous to solving a matrix of equations. This makes it an implicit method,
meaning that one needs to solve a set of linear algebraic equations to obtain a solution at every
time step. Because at each time step, the matrix system must be solved, which can be very time-
consuming, the implicit algorithm is a very slow time stepping process. Newmark’s method, like
most implicit methods, is unconditionally stable. Unconditionally stable methods are those in
which the size of the time step, ∆𝑡𝑡, will not affect the stability of the solution, but rather it is
governed by accuracy considerations.

Oller (2014) compared an explicit solution with an implicit one, and provided the following
aspects:

22

Explicit time integration methods:

1. The solution algorithm is simple in terms of logic and structure, and it allows carrying
out a simple treatment of the different nonlinearities.

2. It requires less memory storage.
3. It does not need expensive tangent operators that are usually found in implicit

methods.
4. The explicit methods lead to reliable algorithms.
5. The solution time increment is bounded, requiring small time steps for analysis. This

makes the solution at very large time domains time-consuming.

Implicit time integration methods:

1. The implicit methods are very robust and stable.
2. The time increments can be much larger than in explicit methods, preserving the

solution stability.
3. They allow more precise solutions with lower error tolerances.
4. A relative drawback is the linearization of the solution through Newton-Raphson,

which requires tangent operators that are usually very difficult to obtain.
5. Another drawback is the large storage demand when using direct solution methods for

the system of equations.

Because of the robustness of the implicit methods, the Newmark’s method is illustrated in the
following section.

2.6.1.1 Newmark-β Method

In 1959, N. M. Newmark developed a family of time-stepping methods based on the following
equations:

𝑴𝑴 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 + 𝑪𝑪 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 + 𝑲𝑲 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 𝑹𝑹⬚
𝑡𝑡+∆𝑡𝑡 (56)

𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 𝑼𝑼⬚
𝑡𝑡 + 𝑼̇𝑼⬚

𝑡𝑡 ∆𝑡𝑡 + ��1
2
− 𝛽𝛽� 𝑼̈𝑼⬚

𝑡𝑡 + 𝛽𝛽 𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡 � ∆𝑡𝑡2 (57)

𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 𝑼̇𝑼⬚
𝑡𝑡 + �(1 − 𝛾𝛾) 𝑼̈𝑼⬚

𝑡𝑡 + 𝛾𝛾 𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡 �∆𝑡𝑡 (58)

The integration parameters 𝛽𝛽 and 𝛾𝛾 determine the stability, accuracy, dissipative and dispersion
characteristics of the system. For linear systems, unconditional stability is achieved when 2𝛽𝛽 ≥
𝛾𝛾 ≥ 1

2
 , and second-order accuracy is obtained for 𝛾𝛾 = 1

2
 , i.e., the error decreases proportional to

∆t2. For 𝛾𝛾 ≥ 1
2
 and 2𝛽𝛽 < 𝛾𝛾, conditional stability is obtained, when the time step is limited to a

critical value (De Borst et al., 2012).

Several well-known time integration schemes can be conceived as special cases of the Newmark
family. For 𝛽𝛽 = 1

4
 and = 1

2
 , the average acceleration scheme, or trapezoidal rule is obtained,

23

which is unconditionally stable and second-order accurate in the time step (Figure 17). Other
implicit schemes are obtained for 𝛽𝛽 = 1

6
 and = 1

2
 , the linear acceleration scheme, and for 𝛽𝛽 = 1

12

and 𝛾𝛾 = 1
2
 , the Fox–Goodwin scheme. Neither scheme, although each has an implicit format, is

unconditionally stable, and the time step is limited to a critical value. Also, some explicit
integration schemes can be considered as special cases of the Newmark family, for instance the
central difference scheme, which is obtained for 𝛽𝛽 = 0 and = 1

2
 .

Figure 17. Newmark’s Constant-Average Acceleration Scheme (Bazi, Gagnon, Sebaaly, &
Ullidtz, 2020)

The Newmark displacement 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 and velocity 𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡 equations is rearranged to obtain
𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 and 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 as a function of 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 .

𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 = − 𝛾𝛾

𝛽𝛽∆𝑡𝑡
𝑼𝑼⬚
𝑡𝑡 + �1 − 𝛾𝛾

𝛽𝛽
� 𝑼̇𝑼⬚

𝑡𝑡 + ∆𝑡𝑡 �1 − 𝛾𝛾
2𝛽𝛽
� 𝑼̈𝑼⬚

𝑡𝑡 + 𝛾𝛾
𝛽𝛽∆𝑡𝑡

𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 (59)

𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 1
𝛽𝛽∆𝑡𝑡2

�− 𝑼𝑼⬚
𝑡𝑡 − ∆𝑡𝑡 𝑼̇𝑼⬚

𝑡𝑡 − ∆𝑡𝑡2 �1
2
− 𝛽𝛽� 𝑼̈𝑼⬚

𝑡𝑡 + 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 � (60)

The former two equations are rewritten as a function of the integration constants 𝑎𝑎0 through 𝑎𝑎7
to simplify the calculations:

𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡 = 𝑼̇𝑼⬚
𝑡𝑡 + 𝑎𝑎6 𝑼̈𝑼⬚

𝑡𝑡 + 𝑎𝑎7 𝑼̈𝑼 = 𝑎𝑎1� 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 − 𝑼𝑼⬚

𝑡𝑡 � − 𝑎𝑎4 𝑼̇𝑼⬚
𝑡𝑡 − 𝑎𝑎5 𝑼̈𝑼⬚

𝑡𝑡
⬚

𝑡𝑡+∆𝑡𝑡 (61)

𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡 = 𝑎𝑎0� 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑼𝑼⬚
𝑡𝑡 � − 𝑎𝑎2 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎3 𝑼̈𝑼⬚
𝑡𝑡 (62)

𝑎𝑎0 = 1
𝛽𝛽∆𝑡𝑡2

 | 𝑎𝑎1 = 𝑎𝑎0𝑎𝑎7 = 𝛾𝛾
𝛽𝛽∆𝑡𝑡

 | 𝑎𝑎2 = 1
𝛽𝛽∆𝑡𝑡

 | 𝑎𝑎3 = 1
2𝛽𝛽
− 1

𝑎𝑎4 = 𝑎𝑎2𝑎𝑎7 − 1 = 𝛾𝛾

𝛽𝛽
− 1 | 𝑎𝑎5 = 𝑎𝑎3𝑎𝑎7 − 𝑎𝑎6 = ∆𝑡𝑡

2
�𝛾𝛾
𝛽𝛽
− 2� | 𝑎𝑎6 = (1 − 𝛾𝛾)∆𝑡𝑡 | 𝑎𝑎7 = 𝛾𝛾∆𝑡𝑡

Replacing 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 and 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 as a function of 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 in the general equation of motion (equation
56), the new equation becomes:

24

𝑴𝑴�𝑎𝑎0 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑎𝑎0 𝑼𝑼⬚
𝑡𝑡 − 𝑎𝑎2 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎3 𝑼̈𝑼⬚
𝑡𝑡 � + 𝑪𝑪�𝑎𝑎1 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑎𝑎1 𝑼𝑼⬚
𝑡𝑡 − 𝑎𝑎4 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎5 𝑼̈𝑼⬚
𝑡𝑡 � + (63)

𝑲𝑲 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 = 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡

which is rewritten in the following effective form:

𝐾𝐾� 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 = 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡 (64)

where 𝐾𝐾� is the effective (tangential) stiffness matrix and 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡 is the effective load.

𝐾𝐾� = 𝑎𝑎0𝑴𝑴 + 𝑎𝑎1𝑪𝑪 + 𝑲𝑲 (65)

𝑹𝑹�⬚
𝑡𝑡+∆𝑡𝑡 = 𝑴𝑴�𝑎𝑎0 𝑼𝑼⬚

𝑡𝑡 + 𝑎𝑎2 𝑼̇𝑼⬚
𝑡𝑡 + 𝑎𝑎3 𝑼̈𝑼⬚

𝑡𝑡 � + 𝑪𝑪�𝑎𝑎1 𝑼𝑼⬚
𝑡𝑡 + 𝑎𝑎4 𝑼̇𝑼⬚

𝑡𝑡 + 𝑎𝑎5 𝑼̈𝑼⬚
𝑡𝑡 � + 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡 (66)

The effective load is rewritten as follows to improve the efficiency by calculating the expressions
between parentheses outside the time steps loop:

𝑹𝑹�⬚
𝑡𝑡+∆𝑡𝑡 = (𝑎𝑎0𝑴𝑴+ 𝑎𝑎1𝑪𝑪) 𝑼𝑼⬚

𝑡𝑡 + (𝑎𝑎2𝑴𝑴 + 𝑎𝑎4𝑪𝑪) 𝑼̇𝑼⬚
𝑡𝑡 + (𝑎𝑎3𝑴𝑴 + 𝑎𝑎5𝑪𝑪) 𝑼̈𝑼⬚

𝑡𝑡 + 𝑹𝑹⬚
𝑡𝑡+∆𝑡𝑡 (67)

After solving for 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 , 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 and 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 are calculated using 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 . The procedure then repeats,

moving forward in time until arriving at the final desired time.

The system of algebraic equations represented by Equation 64 can be solved at each time step for
the unknown displacements, 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 . For a constant time step ∆𝑡𝑡, the effective stiffness matrix 𝐾𝐾�
is constant and needs be computed only once. The effective load on the right-hand side, 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡 ,
must be updated at each time step. By back substitution through the appropriate equations, the
velocities 𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡 and accelerations 𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡 are obtained. For the next time step, 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 , 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 , and

𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 are set equal to 𝑼̈𝑼⬚

𝑡𝑡 , 𝑼̇𝑼⬚
𝑡𝑡 , and 𝑼𝑼⬚

𝑡𝑡 , respectively.

2.6.1.2 Hilber-Hughes-Taylor-α Method

Numerical (artificial) dissipation can be desirable in a number of cases, e.g., to filter out the
high-frequency modal components that are introduced by the spatial discretization. Numerical
dissipation can be introduced in the Newmark scheme for 𝛾𝛾 > 1

2
. Unfortunately, the second-order

accuracy is then lost. To avoid this problem, Hilber, Hughes, & Taylor (1977) developed the α-
method (HHT-α) with controllable numerical damping, while maintaining Newmark’s
assumption that the acceleration varies linearly over the time step.

The damping is the most valuable variable in the automatic time-stepping scheme, because the
slight, high-frequency numerical noise inevitably introduced when the time step is changed is
removed rapidly by a small amount of numerical damping. Each time step change introduces
some slight noise or “ringing” into the solution; a little numerical damping quickly removes this
high frequency noise without having any significant effect on the meaningful, lower frequency
response (ABAQUS, 2019).

25

The α-method reduces to Newmark’s method for 𝛼𝛼 = 0, but introduces numerical dissipation for
−1

3
< 𝛼𝛼 < 0, while second-order accuracy is preserved for 𝛽𝛽 = 1

4
(1 − 𝛼𝛼)2 and 𝛾𝛾 = 1

2
− 𝛼𝛼.

ABAQUS sets 𝛼𝛼 = −0.05 in its implicit integration scheme for slight numerical damping or
transient fidelity.

The equation of motion for time steps can be written as (Hilber, Hughes, & Taylor, 1977):

𝑴𝑴 𝑼̈𝑼⬚

𝑡𝑡+∆𝑡𝑡 + (1 + 𝛼𝛼)𝑪𝑪 𝑼̇𝑼⬚
𝑡𝑡+∆𝑡𝑡 − 𝑪𝑪 𝑼̇𝑼⬚

𝑡𝑡 + (1 + 𝛼𝛼)𝑲𝑲 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼𝑲𝑲 𝑼𝑼⬚

𝑡𝑡 = (1 + 𝛼𝛼) 𝑹𝑹⬚
𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼 𝑹𝑹⬚

𝑡𝑡 (68)

Replacing 𝑼̇𝑼⬚

𝑡𝑡+∆𝑡𝑡 (Equation 61) and 𝑼̈𝑼⬚
𝑡𝑡+∆𝑡𝑡 (Equation 62) as a function of 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 in Equation 68,
the equation of motion becomes:

𝑴𝑴�𝑎𝑎0 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑎𝑎0 𝑼𝑼⬚
𝑡𝑡 − 𝑎𝑎2 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎3 𝑼̈𝑼⬚
𝑡𝑡 � + (1 + 𝛼𝛼)𝑪𝑪�𝑎𝑎1 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝑎𝑎1 𝑼𝑼⬚
𝑡𝑡 − 𝑎𝑎4 𝑼̇𝑼⬚

𝑡𝑡 − 𝑎𝑎5 𝑼̈𝑼⬚
𝑡𝑡 � −

𝛼𝛼𝑪𝑪 𝑼̇𝑼⬚
𝑡𝑡 + (1 + 𝛼𝛼)𝑲𝑲 𝑼𝑼⬚

𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼𝑲𝑲 𝑼𝑼⬚
𝑡𝑡 = (1 + 𝛼𝛼) 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼 𝑹𝑹⬚
𝑡𝑡 (69)

which can be rewritten in the following effective form:

𝐾𝐾� 𝑼𝑼⬚
𝑡𝑡+∆𝑡𝑡 = 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡 (70)

where 𝐾𝐾� is the effective (tangential) stiffness matrix and 𝑹𝑹�⬚

𝑡𝑡+∆𝑡𝑡 is the effective load.

𝐾𝐾� = 𝑎𝑎0𝑴𝑴 + 𝑎𝑎1(1 + 𝛼𝛼)𝑪𝑪 + (1 + 𝛼𝛼)𝑲𝑲 (71)

𝑹𝑹�⬚
𝑡𝑡+∆𝑡𝑡 = 𝑴𝑴�𝑎𝑎0 𝑼𝑼⬚

𝑡𝑡 + 𝑎𝑎2 𝑼̇𝑼⬚
𝑡𝑡 + 𝑎𝑎3 𝑼̈𝑼⬚

𝑡𝑡 � + 𝑪𝑪�𝑎𝑎1(1 + 𝛼𝛼) 𝑼𝑼⬚
𝑡𝑡 + {𝑎𝑎4(1 + 𝛼𝛼) + 𝛼𝛼} 𝑼̇𝑼⬚

𝑡𝑡 +
𝑎𝑎5(1 + 𝛼𝛼) 𝑼̈𝑼⬚

𝑡𝑡 � + 𝛼𝛼𝑲𝑲 𝑼𝑼⬚
𝑡𝑡 + (1 + 𝛼𝛼) 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼 𝑹𝑹⬚
𝑡𝑡 (72)

The effective load can be written in the following form for computational efficiency:

𝑹𝑹�⬚
𝑡𝑡+∆𝑡𝑡 = [𝑎𝑎0𝑴𝑴 + 𝑎𝑎1(1 + 𝛼𝛼)𝑪𝑪 + 𝛼𝛼𝑲𝑲] 𝑼𝑼⬚

𝑡𝑡 + [𝑎𝑎2𝑴𝑴 + {𝑎𝑎4(1 + 𝛼𝛼) + 𝛼𝛼}𝑪𝑪] 𝑼̇𝑼⬚
𝑡𝑡 + (73)

[𝑎𝑎3𝑴𝑴 + 𝑎𝑎5(1 + 𝛼𝛼)𝑪𝑪] 𝑼̈𝑼⬚
𝑡𝑡 + (1 + 𝛼𝛼) 𝑹𝑹⬚

𝑡𝑡+∆𝑡𝑡 − 𝛼𝛼 𝑹𝑹⬚
𝑡𝑡

3. FINITE ELEMENT MODULE

PULSE_FE is programmed following the concepts outlined in Section 2 using the C# (C-Sharp)
programming language in Microsoft® Visual Studio® Community.

An input file is generated after meshing the pavement structure using Gmsh, which is an open-
source 2D and 3D FE mesh generator with a built-in computer-aided design (CAD) engine and
post-processor (Geuzaine & Remacle, 2009). The input file is then manually processed before it
becomes readily available for use by PULSE_FE. It should be noted that the input file has the
same format as ABAQUS, making the validation process simpler.

26

PULSE_FE then reads the nodes’ coordinates and the elements’ connectivity from the input file
and performs the static or dynamic analysis, based on the user’s preference, following the
flowchart shown in Figure 18.

The FE mass, damping, and stiffness matrices are sparse and are stored in a compressed sparse
column format for reducing the storage requirements and for allowing faster matrices operations.

PULSE_FE has no built-in system of units. All input data must be specified in consistent units,
with examples shown in Table 1. The comparison between PULSE_FE and ABAQUS, described
in Section 3.3, uses the U.S. Unit (inch) system.

In the following sections, the mesh generator Gmsh is illustrated for a three-layer pavement
structure. Then, the storage of the matrices using the different formats is discussed. Finally, the
capabilities of the PULSE_FE module are demonstrated for a three-layer pavement structure
under static and dynamic loading by comparing the results to the surface deflections obtained
using ABAQUS.

Figure 18. PULSE_FE Flowchart

27

Table 1. Consistent Units

Quantity SI SI (mm) U.S. Unit (ft) U.S. Unit (in.)
Length m mm ft in.
Force N N lbf lbf
Mass kg tonne (103 kg) slug lbf.s2/in.
Time s s s s
Stress Pa (N/m2) MPa (N/mm2) lbf/ft2 psi (lbf/in.2)
Energy J mJ (10-3 J) lbf.ft lbf.in
Density kg/m3 tonne/mm3 slug/ft3 lbf.s2/in.4

J = Joules mJ = Megajoule
N = Newtons
Pa = Pascal MPa = MegaPascal
SI = International System of Units

3.1 GMSH

The selection of a structured mesh versus a combination of structured and unstructured meshes
depends on the modeling of the infinite media. The far boundary method that requires the use of
an unstructured mesh is initially adopted. The use of triangular or quadrilateral elements in the
infinite media is very time efficient since the size of the elements increases as they get closer to
the far boundary and does not generate excessively large models.

Figure 19 shows a thin flexible pavement sample model, consisting of a 3-inch AC layer, a 12-
inch aggregate base layer, and a subgrade layer that extends to 250 ft to simulate the infinite
media using the far boundary method. The Front-Delaunay 2D algorithm is used to generate the
mesh using Gmsh. A sensitivity analysis was performed to generate the optimal model, in terms
of accuracy and mesh density. The elements are as small as a quarter of an inch under the load,
and they grow monotonically to the far boundary. An unstructured mesh is selected because it is
more appropriate for this model, where the elements expand proportionally with distance without
producing distorted elements.

This model consists of 19,560 nodes and 38,421 linear triangular elements. An equivalent
structured mesh with quarter-inch elements would require 48,000 square elements or 96,000
triangular elements for the two 200-inch-wide surface layers, and a much higher number of
elements for the entire model.

It is important to note that Gmsh (gmsh.info) has an application programming interface (API)
that can be used to integrate it into PULSE_FE.

https://gmsh.info/

28

Figure 19. Thin Flexible Pavement Model Produced using Gmsh (Bazi, Saboundjian, Bou Assi,

& Diab, 2020)

3.2 MATRICES STORAGE

A sparse matrix is one that is composed of mostly zero values. Sparse matrices are distinct from
matrices with mostly non-zero values, which are referred to as dense matrices. A matrix is
typically stored in a 2D array, where each element is identified by two indices representing the
row and column indices. The amount of memory required to store large matrices is significant,
therefore sparse matrices are typically stored in different formats. Sparse matrices reduce the
memory required by storing only the non-zero elements and allow for faster matrices operations.
The FE stiffness, damping, and mass matrices are sparse matrices because most of the elements
are zeros.

Different formats are available to store sparse matrices including, but not limited to, coordinate
list (COO), compressed sparse row (CSR), and compressed sparse column (CSC). COO is a fast
format for constructing the sparse matrices or generating the sparsity pattern. COO is then
converted into CSR or CSC for efficient access and matrix operations. CSR is good for row-wise
slicing, whereas CSC is good for column-wise slicing.

The COO format stores the row indices, column indices, and values for the non-zero elements
(nnz) in three arrays, where each array has a length equal to the number of the nnz. The CSR and
CSC are similar to COO, but compress the row indices and the column indices, respectively.

29

The CSR has the same column indices and values arrays as the COO following a row-major
sorting order. The third array is a row pointer having a length equal to nr + 1, where nr is the
number of rows. The row pointer array has one element per row showing the index where the
given row starts, and its last element is set equal to nnz.

The CSC has the same row indices and values arrays as the COO following a column-major
sorting order. The third array is a column pointer having a length equal to nc + 1, where nc is the
number of columns. The column pointer array has one element per column showing the index
where the given column starts, and its last element is set equal to nnz.

Figure 20 shows an example of the COO, CSR, and CSC storage formats for a sparse matrix
with 9 rows, 9 columns, and 10 non-zero elements. The row and column indices use zero-based
indexing, i.e., the initial position in each array is zero.

 0 1 2 3 4 5 6 7 8

0 a g i
1 c
2 b
3
4 d h
5
6
7 e j
8 f

COO Format:

Row Index 0 2 1 4 7 8 0 4 0 7
Column Index 0 1 3 3 4 5 6 7 8 8

Value a b c d e f g h i j

CSR Format:

Row Pointer 0 3 4 5 5 7 7 7 9 10

Column Index 0 6 8 3 1 3 7 4 8 5
Value a g i c b d h e j f

CSC Format:

Column Pointer 0 1 2 2 4 5 6 7 8 10

Row Index 0 2 1 4 7 8 0 4 0 7
Value a b c d e f g h i j

Figure 20. Sparse Matrix COO, CSR, and CSC Examples (Bazi, Saboundjian, Bou Assi, & Diab,
2020)

This matrix in Figure 20 has a density of 12 percent and a sparsity of 88 percent, where the
density and sparsity are calculated in accordance with the following formulas.

Density (%) = nnz

nr×nc
×100 (74)

30

Sparsity (%) = 100 – Density (%) (75)

A typical pavement model with 24,000 nodes or 48,000 degrees of freedom has matrices with
0.03 percent density or 99.97 percent sparsity, indicating that most elements are zeros.

Finally, the COO format is used in the PULSE_FE module for generating the sparsity pattern,
and CSC format is used for storing and processing all matrices over the related CSR format to
ensure compatibility with the CSparse.Net library.

3.3 STATIC AND DYNAMIC ANALYSES COMPARISON WITH ABAQUS

The PULSE_FE module is validated by comparing the surface deflections to the ABAQUS
software under static and dynamic loading. A three-layer flexible pavement structure consisting
of a 3-inch AC layer, a 12-inch aggregate base layer, and a subgrade layer is considered. The
pavement structure is meshed using Gmsh with only 986 nodes and 1,827 linear triangular
elements. A coarse mesh is used to limit the number of nodes to 1,000.

The model is loaded using a 9,000-lb simulated FWD load applied uniformly over a circular area
with a 6-inch radius. For the dynamic analysis, the FWD load is modeled using a 40-ms
haversine pulse. All layers are modeled as linear elastic isotropic materials for the static analysis
as illustrated in Table 2, and the AC layer is modeled as linear viscoelastic (LVE) for the
dynamic analysis.

Table 3 shows the Prony coefficients for the AC layer. The modulus of elasticity and Poisson’s
ratio are used to generate the stiffness matrix for the static and dynamic analysis, respectively.
The density and Rayleigh damping coefficients are used to generate the mass and damping
matrices for the dynamic analysis, respectively.

It is important to note that ABAQUS is limited to a maximum of 13 Prony coefficients, which is
not the case for PULSE_FE. This limitlessness is important for modeling, and specifically for the
dynamic backcalculation of the master curve, which will be illustrated in future studies.

Table 2. Layer Thicknesses and Properties

Layer Type
Thickness

(in.)
Modulus

(ksi)
Poisson’s

Ratio
Density

(pcf)

Rayleigh
Damping

Coefficients
αR βR

AC
Linear
Elastic 3 500 0.35 150 10 0.001

LVE 3 2,760 0.35 150 0 0
Aggregate
Base

Linear
Elastic 12 50 0.40 120 20 0.002

Subgrade Linear
Elastic — 5 0.45 100 30 0.003

31

Table 3. Prony Coefficients

Term j log(𝝉𝝉𝒋𝒋)
Relative Modulus

𝜶𝜶𝒋𝒋
1 -7 0.252
2 -6 0.108
3 -5 0.227
4 -4 0.18
5 -3 0.1355
6 -2 0.058
7 -1 0.0242
8 0 0.0074
9 1 0.00337
10 2 0.0011
11 3 0.0007
12 4 0.0001
13 5 0.00045

3.3.1 Static Analysis

Figure 21 shows the surface deflection basins calculated using the PULSE_FE module and
ABAQUS. The deflections are considered to be identical for practical purposes as demonstrated
with a maximum difference of 1.68×10-6 mils or 5.34×10-8 percent between the results.

32

Figure 21. PULSE_FE and ABAQUS FWD Surface Deflections (Bazi, Saboundjian, Bou Assi,
& Diab, 2020)

3.3.2 Dynamic Analysis

Figure 22 shows the PULSE_FE deflection time histories at various offsets ranging from 0 to 72
inches, along with the simulated FWD dynamic load. The HHT-α numerical integration
procedure is followed with 𝛼𝛼 = −0.05 resulting in 𝛽𝛽 = 0.275625 and 𝛾𝛾 = 0.55.

Figure 22. PULSE_FE Deflection Time Histories at Various Radial Offsets
((Bazi, Saboundjian, Bou Assi, & Diab, 2020)

Figures 23 and 24 compare the vertical (axial) and radial deflections, respectively, for selected
offsets using PULSE_FE and ABAQUS. The deflections are identical with maximum difference

Deflections D0 through D72

Load

33

of 4.49×10-7 mils or 2.34×10-6 percent. It should be noted that the radial deflections are not
considered in the dynamic backcalculation, and they are simply compared for validation
purposes.

Figure 23. PULSE_FE and ABAQUS Vertical Surface Deflections at 0-, 24-, 48-, and 72-inch
Offsets using HHT-α Method (Bazi, Saboundjian, Bou Assi, & Diab, 2020)

Figure 24. PULSE_FE and ABAQUS Radial Surface Deflections at 24- and 72-inch Offsets
using HHT-α Method ((Bazi, Saboundjian, Bou Assi, & Diab, 2020)

3.3.3 PULSE_FE Computational Efficiency

PULSE_FE is currently programmed to use one computer processor. Using a laptop with an Intel
core i7 processor and Microsoft® Windows® 10 Pro operating system (a standard laptop),
PULSE_FE is able to solve the system for a linear elastic dense model with 24,000 nodes in 5
seconds using 100 time steps (e.g., every 1 ms for a 100 ms duration) and in 6 seconds using 200
time steps. On the other hand, ABAQUS completed the same tasks with one processor in about 5
and 10 minutes for the 100 and 200 steps, respectively. Increasing the number of parallel
processors in ABAQUS from one to three reduces the analysis time in half.

34

When LVE material is considered in the modeling, the PULSE_FE computation time is slightly
increased from 5 seconds to under 10 seconds using 100 time steps. The increase in time is
linearly proportional to the number of LVE elements and the number of time steps.

In summary, PULSE_FE is shown to be computationally efficient by completing the task in 1 to
3 percent less time than ABAQUS takes, making the dynamic backcalculation feasible.

4. DYNAMIC BACKCALCULATION UPDATE

An application, PULSE 2019, was developed for the dynamic backcalculation that uses FE
modeling for forward calculation and the Newton-Raphson method for improving the variables
(Bazi & Bou Assi, 2022). The application reliably predicted the AC master curve for several
simulated pavement structures and mixes at different temperatures. The application was
upgraded to PULSE 2020, as part of the FAA project, to improve the master curve prediction.
This improvement was achieved by better estimating the Jacobian matrix and by using additional
FWD parameters that are critical for the backcalculation process.

4.1 MASTER CURVE PREDICTION HISTORICAL BACKGROUND

Over the past several years, researchers from Michigan State University (MSU) and Iowa State
University (ISU) attempted to develop the AC master curve from FWD data using dynamic
backcalculation. The initial results showed the need for more research and validation before a
software tool could be made available.

Kutay, Chatti, and Lei (2011) from MSU pioneered the effort to predict the damaged master
curve of the AC layer from FWD data. In their method, they used a layered, viscoelastic-forward
algorithm in an iterative backcalculation procedure. The master curve was reliably predicted
using simulated FWD data for frequencies above 10-3 Hz. Researchers recommend
improvements in FWD technology and test procedures.

Varma, Kutay, and Chatti (2013) from MSU indicated that the master curve development
requires more data than the surface deflection time-histories of a single FWD drop. They suggest
performing the FWD testing at different temperatures in the range of 68 °F to 122 °F to
maximize the portion of the master curve that can be reliably backcalculated.

Gopalakrishnan et al. (2014, 2015) from ISU investigated the feasibility of employing neural
networks (NNs) to backcalculate the master curve using the same layered viscoelastic forward
analysis tool developed by MSU. Researchers indicated that the current prediction accuracies are
not sufficient to recommend these models for practical implementation.

Zaabar, Chatti, Lee, and Lajnef (2014) from MSU used a time-domain viscoelastic dynamic
solution as a forward routine and a genetic algorithm for backcalculation analysis. Field FWD
load and deflection time histories from three sites were used for validation. The new algorithm
was capable of reliably backcalculating the master curve of the AC layer.

Varma and Kutay (2016) from MSU used a layered viscoelastic-nonlinear forward model to
develop a genetic algorithm-based backcalculation scheme. The study showed that running FWD

35

at two different temperatures can be sufficient to compute the master curve of asphalt pavements
and the nonlinear properties of unbound layers. The algorithm is validated using two FWD test
runs at a long-term pavement performance (LTPP) test section.

Lee, Ayyala, and Von Quintus (2017) conducted dynamic backcalculation on two LTPP
sections. The backcalculated master curves were significantly different from those constructed
using laboratory testing data.

Hamim et al. (2020) recently used artificial neural network (ANN) models designed using the
FWD deflection-time history data obtained by the FE method to predict the master curve. The
study evaluated two ANN models with one model demonstrated to be more accurate than the
other.

4.2 PULSE 2020 UPGRADE

Several features were added to the PULSE 2020 application, as discussed in this report, to better
estimate the Jacobian matrix for the Newton-Raphson method and to evaluate additional
deflection parameters for improving the AC master curve prediction. The application was also
upgraded to the same .NET framework using the C# programming language. The ABAQUS FE
solver was used in this study for the forward calculation of the pavement surface deflections
through a dynamic implicit analysis. The PULSE_FE module was used for the forward
calculation.

The AC layer for flexible pavements was modeled as an LVE material, and all other layers,
including the Portland cement concrete layer for rigid pavements, were modeled as linear elastic
with damping. Figure 25 shows a detailed flowchart of the PULSE application.

36

Figure 25. PULSE 2020 Application Flowchart (Bazi, Saboundjian, Bou Assi, & Diab, 2020)

4.2.1 Asphalt Concrete LVE Behavior

The LVE behavior of AC is considered using the master curve’s reduced sigmoidal function
(Equation 76). This model is slightly different than the typical model, where a coefficient 𝛽𝛽′ is
used instead of 𝛽𝛽. The sigmoidal function’s exponent 𝛽𝛽 + 𝛾𝛾 × log(𝑓𝑓𝑟𝑟) in the standard model is
rewritten in the form of 𝛽𝛽′ + 𝛾𝛾 × log(𝑓𝑓), where 𝛽𝛽′ = 𝛽𝛽 + 𝛾𝛾 × log[a(T)]. This substitution
allows the determination of the four sigmoidal coefficients at any temperature T, without
including a time-temperature superposition model (Bazi & Bou Assi, 2022). The master curve at
the reference temperature is then determined using backcalculated variables from a minimum of
two temperatures.

𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛿𝛿 + 𝛼𝛼
1+𝑒𝑒𝛽𝛽′ + 𝛾𝛾×log(𝑓𝑓) (76)

37

where:

 E = time–temperature-dependent relaxation modulus

δ, α, 𝛽𝛽′, and γ = fit constants
10δ = minimum modulus
10δ + α = maximum modulus
γ = steepness of the function
𝛽𝛽′ = 𝛽𝛽 + 𝛾𝛾 × log[a(T)]
f = frequency
T = Temperature
log[a(T)] = shift factor

The four master curve coefficients (variables) are used to calculate the Prony series coefficients
for use in the FE model (Zaabar, Chatti, Lee, & Lajnef, 2014; Bazi & Bou Assi, 2022).

4.2.2 Newton’s Method for Approximating Roots

Newton’s method, also known as the Newton-Raphson method, is a root-finding algorithm that
produces iteratively better approximations to the roots of a function following Equation 77.

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛) (77)

The process starts with an initial guess, and a better approximation of the root is obtained after
every iteration. Figure 26 provides an illustration of how the root of a function f(x) = -0.5 -2
× ln(2-x) is better approximated starting at x0 = 1.9500 and reaching the root x5 = 1.2212 in five
iterations, where the root is accurate to four decimal figures. The ordinates and slopes are
provided in Figure 26 for verification using Equation 77. Newton’s method is efficient in
reaching a solution in a few iterations, which is also the proven case for dynamic
backcalculation.

38

Figure 26. Example of Newton’s Method for Obtaining the Root of f(x) = -0.5 -2×ln(2-x)

Starting with x0 = 1.9500 (Bazi, Saboundjian, Bou Assi, & Diab, 2020)

The multivariate Newton’s method is used in the dynamic backcalculation by formulating the
problem using Equation 78 (Harichandran et al., 1993; Chatti, Ji, & Harichandran, 2004; Bazi &
Bou Assi, 2022).

⎣
⎢
⎢
⎡
𝜕𝜕𝑃𝑃1
𝜕𝜕𝑉𝑉1

⋯ 𝜕𝜕𝑃𝑃1
𝜕𝜕𝑉𝑉𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕𝑃𝑃𝑛𝑛
𝜕𝜕𝑉𝑉1

⋯ 𝜕𝜕𝑃𝑃𝑛𝑛
𝜕𝜕𝑉𝑉𝑚𝑚⎦

⎥
⎥
⎤
𝑖𝑖

�
𝜕𝜕𝑉𝑉1
⋮

𝜕𝜕𝑉𝑉𝑚𝑚
�

𝑖𝑖

= �
𝑃𝑃1
⋮
𝑃𝑃𝑛𝑛
� − �

𝑃𝑃1�
⋮
𝑃𝑃𝑛𝑛�
�

𝑖𝑖

= �
𝑃𝑃1 − 𝑃𝑃1�

𝑖𝑖

⋮
𝑃𝑃𝑛𝑛 − 𝑃𝑃𝑛𝑛�

𝑖𝑖
� (78)

where:

𝑃𝑃1:𝑛𝑛� = Calculated parameters

𝑃𝑃1:𝑛𝑛 = Measured parameters

𝑉𝑉1:𝑚𝑚= Variables
𝜕𝜕𝑃𝑃1:𝑛𝑛
𝜕𝜕𝑉𝑉1:𝑚𝑚

 = First-order derivative (slope)

 𝑖𝑖 = Iteration number

39

The offset array, �
𝜕𝜕𝑉𝑉1
⋮

𝜕𝜕𝑉𝑉𝑚𝑚
�

𝑖𝑖

 , is determined for every iteration by multiplying the inverse of the

Jacobian matrix (matrix with first-order derivatives) by the error array, �
𝑃𝑃1 − 𝑃𝑃1�

𝑖𝑖

⋮
𝑃𝑃𝑛𝑛 − 𝑃𝑃𝑛𝑛�

𝑖𝑖
�, and adding it to

the previously determined variables. The Jacobian matrix is inverted using the singular-value
decomposition (SVD) process.

4.2.2.1 Newton’s Method Step Size

The Jacobian matrix is populated numerically using the finite-difference derivative
approximation since the analytical expressions of the partial derivatives are not available. A step
size, h, is used to vary one variable at a time and see the effect of such variation on the response
parameters. In the former PULSE 2019 application, the master curve variables δ, α, βʹ, and γ
were simply multiplied by 1+h using the forward finite-difference, which results in a variation
that is different than h for the AC moduli. This is depicted by the dotted lines in Figure 27, where
a step size of 0.1, or 10 percent, results in a variation in the AC moduli in the range of –19.9
percent and 137.4 percent at the FWD’s most dominant frequency of 17 Hz [log(17) = 1.23].

To address this limitation and to improve the slope calculation, four equations (79 through 82)
were developed to calculate the master curve variables (𝛿𝛿ℎ, 𝛼𝛼ℎ, 𝛽𝛽′ℎ, and 𝛾𝛾ℎ) that would cause a
step size (=h) variation in the AC moduli at a preselected frequency. This is illustrated by the
solid lines in Figure 27, where the variation is exactly equal to 10 percent at 17 Hz. All equations
shown below are frequency dependent, except for the 𝛿𝛿ℎ equation.

𝛿𝛿ℎ = 𝛿𝛿 + 𝑙𝑙𝑙𝑙𝑙𝑙(1 + ℎ) (79)

𝛼𝛼ℎ = � 𝛼𝛼

1+𝑒𝑒𝛽𝛽′+𝛾𝛾.log𝑓𝑓 + 𝑙𝑙𝑙𝑙𝑙𝑙(1 + ℎ)� × �1 + 𝑒𝑒𝛽𝛽′+𝛾𝛾.log𝑓𝑓� (80)

𝛽𝛽′ℎ = 𝑙𝑙𝑙𝑙 � 𝛼𝛼
𝛼𝛼

1+𝑒𝑒𝛽𝛽′+𝛾𝛾.log𝑓𝑓
+𝑙𝑙𝑙𝑙𝑙𝑙(1+ℎ)

− 1� − 𝛾𝛾. log𝑓𝑓 (81)

𝛾𝛾ℎ =
𝑙𝑙𝑙𝑙� 𝛼𝛼

𝛼𝛼
1+𝑒𝑒𝛽𝛽′+𝛾𝛾.log𝑓𝑓

+𝑙𝑙𝑙𝑙𝑙𝑙(1+ℎ)
−1�−𝛽𝛽′

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 (82)

40

Figure 27. Variations in AC Moduli Due to Variations in Sigmoidal Function Coefficients using

a Step Size h = 0.1 (10 percent)

4.2.3 Backcalculation Parameters

The FWD deflection time histories contain information that is unique to each pavement structure.
The static backcalculation methods only use peak deflections, whereas the traditional dynamic
backcalculation methods use peak deflections and the time delay or lag between the pulses. The
parameters that use peak deflections and time delays may be adequate for the dynamic
backcalculation of the pavement variables, but they are not sufficient to reliably obtain the AC
master curve. Bazi and Bou Assi (2022) used additional parameters in the PULSE 2019
application to capture the shape and magnitude of the deflection time history for every FWD
sensor, and they were successful in obtaining the master curve for most of the evaluated mixes.
In the PULSE 2020 application, Bazi and Bou Assi (2022) explored additional parameters that
are critical for the backcalculation process.

The PULSE 2019 parameters, shown in orange in Figure 28, include the peak deflection (DPeak)
that occurs at time TDPeak; the times to the left and right of the peak that correspond to 50 percent
of the peak deflection T50L and T50R, respectively; and the duration of the pulse at 50 percent of
the peak deflection calculated as the difference between T50R and T50L (Dur50).

In addition to the 5 parameters that are listed above, 17 additional parameters are explored for
use in the PULSE 2020 application—for a total of 22 parameters—and they are shown in bold in
Figures 28 and 29. Figure 28 shows the time history of the surface deflection, whereas Figure 29
shows the time history of the surface velocity.

41

Figure 28. Typical FWD Surface Deflections Time Histories

Figure 29. Typical FWD Surface Velocities Time Histories

All 22 parameters are extracted automatically for every sensor using a module named “PULSE
Analyzer.” The module uses a high-degree polynomial fitting along with its derivatives to
accurately quantify all the parameters. The fitting is important to accurately obtain the FWD
parameters since the FWD measured and calculated data are discrete and not continuous. The
importance of fitting is illustrated in Figure 28 for T75R, where the time does not coincide with a
discrete data point (discrete points shown in blue). In this case, T75R is the time to the right of the
peak that corresponds to 75 percent of the peak deflection.

TDPeak, DPeak

T75R, 0.75×DPeak

T50R, 0.50×DPeak

T25R, 0.25×DPeak

T75L, 0.75×DPeak

T50L, 0.50×DPeak

T25L, 0.25×DPeak

TDminL, DminL TDminR, DminR

Tend, Dend

Dur75

Dur50

Dur25

TVPeak, VPeak

TVminR, VminR

TVminL, VminL

Slope = 0 at peak
deflection

Largest positive slope for
increasing deflection

Largest negative slope for
decreasing deflection

Abscissa, Ordinate

42

The plot of the surface velocity is determined using the central-difference finite approximation.
The parameters are determined through data fitting of the deflection time histories.

Certain parameters, such as TDminL, DminL, TDminR, DminR, TVminL and VminL, are not available for
all sensors and pavement structures; but when present, they need to be evaluated because they
provide information about the pavement structures to be included in the dynamic backcalculation
process. For example, the minimum negative deflection to the right of the peak, represented by
TDminR and DminR, indicates the presence of a shallow stiff layer that produces the surface
bouncing. Significant errors would then be expected if the stiff layer is not considered in the
backcalculation model.

4.3 MASTER CURVE PREDICTION

The capabilities of the PULSE 2020 application are demonstrated for the same combinations of
simulated flexible pavement structures and AC mixes used by Bazi and Bou Assi (2022). Those
combinations consist of three flexible pavement structures with varying AC layer thicknesses
ranging from 3 inches to 7 inches for mix A and one flexible structure with a 7-inch-thick AC
layer for mix B at temperatures ranging from 30 °F to 100 °F.

Each combination had eight variables: four for the AC layer and two each for the aggregate base
and subgrade layers. The target and seed (starting) values for the eight variables along with their
absolute differences are shown in Table 4.

The backcalculation test results using PULSE 2019 are shown in Table 5 without any highlights
for the 32 combinations. The frequency range (on a log scale), for which the AC moduli are
determined to accuracies less than 1 percent, is shown for every combination. The maximum
error in the AC moduli at 17 Hz and the unbound layers variables is shown between brackets.
The AC master curve for frequencies larger than 10-1 or 10-2 Hz (log frequency = –1 or –2) are
determined to less than 1 percent error for 17 out of the 32 combinations (53 percent).

The pavement variables are improved using the PULSE 2020 application (cells with green
highlights) for the combinations where the maximum moduli are not obtained to accuracies less
than 1 percent, thus, resulting in improved prediction of the AC master curves. The number of
combinations, where the AC maximum moduli are predicted to accuracies less than 1 percent,
has significantly increased from 17 to 28 combinations (an increase from 53 to 88 percent). This
improvement can be attributed to (1) the use of four additional parameters (TVPeak, VPeak, TVminR,
and VminR) for a total of nine parameters, and (2) the improvement in the Jacobian matrix
calculation by using 𝛿𝛿ℎ, 𝛼𝛼ℎ, 𝛽𝛽′ℎ, and 𝛾𝛾ℎ, and the reduction in the step size from 0.1 to 0.01.
VPeak refers to the peak velocity or deflection slope that occurs at time TVPeak. VminR refers to the
minimum velocity to the right of the peak deflection that occurs at time TVminR. For the
combinations where the master curve is better predicted, the errors in the AC modulus at 17 Hz
and sublayer variables are also improved.

43

Table 4. Target and Seed Values of Variables1, 2

Layer
Absolute

Difference Variable Target Value Seed Value

AC
(h1 = 3, 5, & 7 inch)

Maximum E =
10δ+α

Mix A: 24%
Mix B: 21%

E at 17 Hz & 68 °F

Mix A: 18%
Mix B: 6%

Sigmoidal coefficient δ Mix A: –0.966
Mix B: –0.134

Mix A: –1
Mix B: –0.3

Sigmoidal coefficient α Mix A: 4.523
Mix B: 3.703

Mix A: 4.65
Mix B: 3.95

Sigmoidal coefficient β’
𝛽𝛽′ = 𝛽𝛽 + 𝛾𝛾 × log[a(T)]

Mix A: –1.188–0.494×log[a(T)]
Mix B: –1.417–0.548×log[a(T)]

Exact β′ + 0.2

Sigmoidal coefficient γ Mix A: –0.494
Mix B: –0.548 –0.65

Aggregate Base
(h2 = 12 inch)

25% Modulus E2 40 ksi 50 ksi

50% Rayleigh damping
coefficient βR 0.002 sec. 0.003 sec.

Subgrade
40% Modulus E3 5 ksi 7 ksi

50% Rayleigh damping
coefficient βR 0.002 sec. 0.001 sec.

1Ei = modulus of elasticity of ith layer; hi = layer thickness of ith layer; i = 1, 2, and 3 correspond to surface, base, and subgrade layers, respectively.
2Ea is the activation energy used in the shift factor in accordance with the Arrhenius law (Ea =181,000 for mix A & 170,500 for mix B).
Reference temperature = 68 °F (293.15 K).

44

Table 5. Dynamic Backcalculation Frequency Range (log) and Maximum Error1, 2

Temp. (°F)

Mix A Mix B
AC Thickness

3 in.
AC Thickness

5 in.
AC Thickness

7 in.
AC Thickness

7 in.

30 –1.6 to Max. [0.04%] –2.1 to Max. [0.1%] –2.0 to Max. [0.4%]
1.3 to 1.8 [1.0%]

–5.1 to Max. [0.01%]

40 –3.9 to Max. [0.01%]
1.1 to 1.4 [1.4%] 1.0 to 2.6 [1.2%]

0.3 to Max. [2.7%]
–1.4 to Max. [0.005%] –0.7 to Max. [1.0%]

50 –3.1 to Max. [0.02%] –3.4 to Max. [0.06%] –3 to Max. [0.1%] –2.4 to Max. [0.3%]

60 –2.3 to Max. [0.008%] –2.1 to Max. [0.03%] –2.2 to Max. [0.07%] –3.6 to Max. [1.2%]

70 –1.9 to Max. [0.003%] –1.5 to Max. [0.02%]
–2.2 to 5.7 [0.2%]

–0.9 to Max. [0.14%]
–1.9 to Max. [0.01%]

80 –1.8 to Max. [0.001%]
–1.5 to 7.0 [0.007%] 0.6 to 2.1 [1.5%] –0.7 to 6.7 [0.04%]

–1.4 to 6.8 [0.009%] –1.8 to Max. [0.005%] –1.3 to Max. [0.03%]

90
–2.1 to 6.5 [0.005%] –2.1 to 4.3 [0.03%] 0.5 to 2.5 [0.5%] –0.6 to 4.9 [0.03%]

–2.3 to 6.3 [0.02%] –2.2 to 5.9 [0.03%] –3.1 to Max. [0.01%] –2.5 to Max. [0.005%]

100
–1.3 to 5.9 [0.02%] –1.2 to 5.1 [0.01%] –1.1 to 4.7 [0.01%] 0.4 to 2.2 [1.4%]

–1.4 to 5.6 [0.01%] –3.0 to Max. [0.002%] –4.1 to Max. [0.001%] –2.3 to Max. [0.003%]

1 Cells highlighted in green were run using PULSE 2020.
2 Max. = Maximum modulus.

45

4.4 PARAMETRIC STUDY

A parametric study was performed using FE axisymmetric modeling of FWD load to evaluate
the influence of layer thicknesses, material properties, and presence of stiff layers on the FWD
parameters. The parametric study consists of 15,552 combinations. The AC was modeled as LVE
material by considering the master curve sigmoidal function variables δ, α, β, and γ (Table 6).

Table 6. Parametric Study Combinations

Pavement Type Flexible1

Surface Layer

Thickness 2 levels: h1 = 3 & 6 inch

Property [Linear
Viscoelastic]2

3 levels: δ = –1.3, –1, & –0.82
3 levels: α = 4.15, 4.5, & 4.7
3 levels: β = –1.57, –1.2, & –0.73
3 levels: γ = –0.8, –0.5, & –0.12

Aggregate
Base Layer

Thickness 2 levels: h2 = 6 & 12 inch

Property [Linear Elastic]
2 levels: E2 = 30 & 60 ksi
1 level: βR = 0.002

Subgrade Layer [Linear Elastic] 2 levels: E3 = 5 & 15 ksi

Stiff Layer Thickness3 and Property 3 levels: None, 10 feet with E4 = 100 ksi & 20 feet with E4 =
100 ksi

Rayleigh Damping Parameters
(Subgrade & Stiff Layers)

2 levels: αR = 0 & 50
2 levels: βR = 0.002 & 0.006

FWD Load Level 1 level: 40 msec. haversine pulse with radius of loaded area =
6 inch, and Load level = 9 kips

1Ei = modulus of elasticity of ith layer; hi = layer thickness of ith layer; i = 1, 2, 3, and 4 correspond to the surface,
base, subgrade, and stiff layers, respectively.
2Variables were determined to cause a 50 percent variation in the modulus of the FWD’s most dominant frequency
of 17 Hz.
3Stiff layer thickness determined from surface.

The 22 FWD parameters were determined for each sensor of the 15,552 combinations, and a
regression analysis was performed to understand the effect (positive or negative) and to quantify
the contribution of the various predictor variables (pavement variables) on the response variables
(FWD parameters). The best subset of four predictor variables was selected for each response
variable, producing total contributions in the range of 40 to 95 percent for each response
variable. An average contribution of 81 percent is calculated (Table 7). A similar analysis was
conducted in previous research (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020), where only three FWD
parameters were considered, and two levels of LVE AC behavior were modeled.

46

Table 7. Effects and Percent Contributions of Model Parameters on Response Variables

Response
Variable at

Offset
(inch)

Predictor Variables (%)
Sum
(%) h1 δ α β γ h2 E2 E3 hSL αR βR

D
Pe

ak
 0 –23.24 –7.49 –5.99 –33.43 70.2

24 –1.9 –3.64 –82.57 –2.52 90.6
48 –86.46 +0.55 –4.23 –3.99 95.2
72 –71.31 +3.15 –8.04 –6.88 89.4

T D
Pe

ak
 0 +11.08 –13.09 –53.54 +8.09 85.8

24 –68.35 +1.48 –1.33 +21.13 92.3
48 –2.99 –70.65 +4.13 +6.11 83.9
72 –2.08 –2.47 –74.91 +6.46 85.9

D
m

in
L 0 –23.24 –7.49 –5.99 –33.43 70.2

24 –1.90 –3.64 –82.57 –2.52 90.6
48 –86.18 +0.54 –4.11 –4.12 94.9
72 –72.03 +2.60 –6.60 –7.69 88.9

T D
m

in
L 0 ––

24 ––
48 –15.57 –18.81 –9.68 –17.46 61.5
72 –6.09 –9.11 –53.99 –5.90 75.1

D
m

in
R

 0 –21.84 –6.81 –5.37 –35.83 69.8
24 –2.99 –76.93 –3.28 –4.08 87.3
48 –74.25 –1.73 –8.05 –6.29 90.3
72 –62.79 –0.83 –13.09 –9.65 86.3

T D
m

in
R
 0 –41.66 +2.71 +0.28 +8.92 53.6

24 –51.65 +5.75 +0.10 +8.39 65.9
48 –50.79 +8.61 +0.01 +7.75 67.1
72 –47.85 +8.81 +0.01 +5.88 62.5

D
ur

25
 0 +12.27 –11.13 –35.98 +15.50 74.9

24 +3.0 –44.11 +11.63 +19.53 78.3
48 +1.47 –29.67 +28.80 +17.73 77.6
72 –4.28 +28.74 –0.80 +6.34 40.1

D
ur

50
 0 +13.08 –11.06 –39.53 +14.77 78.4

24 +3.24 –48.45 +7.3 +20.47 79.5
48 +1.76 –34.54 +20.75 +18.93 76.0
72 +1.16 –14.95 +40.21 +18.92 75.2

D
ur

75
 0 +13.01 –10.94 –42.26 +15.76 82.0

24 +3.08 –49.90 +6.19 +21.68 80.8
48 +1.92 –35.74 +17.50 +19.54 74.7
72 +1.37 –14.66 +36.33 +20.61 73.0

D
En

d

0 –23.94 –7.22 –5.75 –32.12 69.0
24 –1.89 –3.57 –79.94 –1.66 87.1
48 –76.31 +0.58 –3.53 –2.16 82.6
72 –54.58 +1.76 –6.43 –3.60 66.3

T 2
5L

 0 +7.98 +3.68 –14.74 –57.72 84.1
24 –4.26 +1.78 –66.16 +13.98 86.2
48 –10.18 –8.07 –3.79 –55.60 77.6
72 –5.00 –6.92 –2.12 –68.57 82.6

47

Table 7. Effects and Percent Contributions of Model Parameters on Response Variables
(Continued)

Response

Variable at
Offset
(inch)

Predictor Variables (%)
Sum
(%) h1 δ α β γ h2 E2 E3 hSL αR βR

T 2
5R

 0 +11.98 –12.13 –40.63 +13.40 78.1
24 +1.23 –52.82 +9.40 +20.45 83.9
48 +0.03 –48.87 +23.10 +13.65 85.6
72 –26.73 +24.80 –0.36 +3.39 55.3

T 5
0L

 0 +9.37 –14.09 –56.44 +4.69 84.6
24 –1.97 –68.77 –1.64 +17.04 89.4
48 –7.70 –5.88 –2.76 –63.26 79.6
72 –4.18 –5.42 –1.73 –73.19 84.5

T 5
0R

 0 +12.19 –12.55 –46.85 +11.06 82.6
24 –61.06 +4.63 –0.77 +21.43 87.9
48 –0.21 –61.23 +13.11 +12.14 86.7
72 –0.44 –56.55 +23.09 +7.09 87.2

T 7
5L

 0 +10.17 –13.65 –55.41 +5.97 85.2
24 –0.88 –69.42 –1.61 +18.89 90.8
48 –5.76 –4.34 –67.68 +2.78 80.6
72 –3.42 –4.25 –75.55 +2.57 85.8

T 7
5R

 0 +11.73 –12.75 –50.68 +10.07 85.2
24 –65.00 +2.91 –0.98 +21.91 90.8
48 –0.90 –67.51 +8.25 +9.92 86.6
72 –1.03 –66.35 +14.81 +4.74 86.9

V
m

in
L 0 –26.28 –7.43 –6.34 –26.44 66.5

24 –2.70 –4.31 –77.13 –4.89 89.0
48 –0.91 –79.93 –3.57 –8.12 92.5
72 –1.47 –66.63 –4.40 –13.25 85.7

T V
m

in
L 0

24
48 –16.54 –16.72 –11.47 –13.85 58.6
72 –6.75 –7.91 –51.94 –6.78 73.4

V
m

in
R

 0 –28.12 +6.65 –7.47 –21.19 63.4
24 –3.71 –5.05 –68.03 –8.45 85.2
48 –0.68 –71.43 –5.33 –13.44 90.9
72 –0.51 –58.32 –9.37 –19.49 87.7

T V
m

in
R
 0 +10.71 –11.84 –55.73 +6.12 84.4

24 +0.50 –70.00 –3.44 +17.64 91.6
48 –1.65 –76.42 –2.78 +5.04 85.9
72 –1.57 –79.15 +1.63 +2.28 84.6

V
Pe

ak
 0 –26.28 –7.43 –6.34 –26.44 66.5

24 –2.70 –4.31 –77.13 –4.89 89.0
48 –0.51 –81.69 –3.93 –7.77 93.9
72 –68.28 +1.17 –6.19 –12.54 88.2

T V
Pe

ak
 0 +9.90 –13.87 –56.12 +4.63 84.5

24 –1.76 –68.61 –1.82 +17.69 89.9
48 –7.03 –4.95 –2.39 –65.71 80.1
72 –3.80 –4.27 –1.55 –75.78 85.4

48

The predictor variables in Table 7 consist of the AC layer thickness h1, the AC master curve
variables (δ, α, β, and γ), the base layer thickness h2 and modulus E2, the subgrade modulus E3,
the depth to the stiff layer hSL, and the subgrade’s Rayleigh damping coefficients αR and βR.
A review of Table 7 shows that the subgrade modulus E3 is the most significant predictor
variable for all FWD parameters (response variables).

The peak deflection under the load (DPeak at 0-inch offset) is the most affected by the thickness of
the surface layer and the subgrade modulus; an increase h1 and E3 decreases the deflection under
the load [negative (–) effect]. The outer deflections, on the other hand, are the most affected by
the subgrade modulus and the Rayleigh damping coefficient βR.

The time of the peak deflection (TDPeak) is the most affected by h1, γ, E3, hSL, and βR. For
example, an increase in h1 and βR increases the time of the peak deflection under the load (i.e.,
delays the peak), whereas an increase in γ and E3 decreases the time of the peak deflection. An
increase in γ produces a lower AC modulus.

The minimum deflection (DminL) to the left of the peak is common for the outer sensors when
testing relatively thin and soft pavement structures, and it is the most affected by h1, h2, and E3.
The minimum deflection (DminR) to the right of the peak is common for pavement structures with
shallow stiff layers, and it is the most affected by E3, hSL, and βR.

The deflection pulse durations at 25, 50, and 75 percent of the peak deflection (Dur25, Dur50, and
Dur75, respectively) are the most affected by h1, E3, hSL, and βR.

The times to the left of the peak corresponding to 25, 50, and 75 percent of the peak deflection
(T25L, T50L, and T75L, respectively) are the most affected by h1 and E3, whereas the times to the
right of the peak (T25R, T50R, and T75R) are the most affected by E3 and βR.

The velocities (VminL, VPeak, and VminR) are affected similar to their deflection counterparts
(DminL, DPeak, and DminR).

Considering all contributions for the various response variables, the subgrade modulus
predominantly controls the FWD parameters with a 70 percent contribution, as illustrated in
Figure 30, followed by the Rayleigh damping coefficient βR, the AC thickness, and the depth to
the stiff layer, when present.

The contribution of the AC master curve variables is minimal relative to the major contributors.
As a result, the backcalculation of the AC master curve is increasingly challenging.

Finally, the sum of the contributions (last column in Table 7) is used to determine the FWD
parameters with the largest contributions for use in dynamic backcalculation. The following 12
FWD parameters are shown to have the most significant effect:

• DminL, DPeak, TPeak, DminR
• T50L, T50R, T75L, T75R
• VminL, VPeak, TVPeak, VminR

49

Figure 30. Overall Contribution of the Predictor Variables (Bazi, Saboundjian, Bou Assi, &
Diab, 2020)

4.5 DYNAMIC BACKCALCULATION OF FAA SECTION

The PULSE 2020 application was used for the dynamic backcalculation of a flexible pavement
structure built at the FAA NAPTF. The NAPTF is a fully enclosed instrumented test track
900 feet long by 60 feet wide, where flexible and rigid sections are built, instrumented, and
trafficked to evaluate different pavement technologies and to advance airport pavement design
and evaluation methods.

The pavement structures of CC-9 were built in December 2019 and consist of 10 flexible
pavement test items designed to address multiple objectives. Four test items within low-strength
subgrade flexible pavement with stabilized base (LFS)-1 and LFS-2 are designed to analyze the
effect of P-403- and P-209-layer thicknesses on the fatigue life. Four test items within LFC-3 and
LFC-4 are comparable pavement structures designed to analyze the effect of geosynthetic
materials and cement-treated permeable base material. Two test items within LFC-5 are designed
to analyze the strain criteria for flexible pavement allowable overload.

The southern LFS-2 section (LFS-2S) was selected for this study (Figure 31), and the structure
consisted of 4-inch P-401, 5-inch P-403, and 30-inch P-209 over a Dupont clay subgrade (P-
152). P-401 and P-403 refer to the AC layers, P-209 refers to the crushed aggregate base layer,
and P-152 refers to the subgrade layer as defined in FAA Advisory Circular (FAA AC)
150/5370-10H.

FWD testing is performed periodically to evaluate the uniformity of the sections before
trafficking and to quantify the damage during trafficking. Pre-traffic FWD testing was performed

50

on December 30, 2019, and January 16, 2020, and the data from the December testing were used
for the analysis.

LFS-2S (Station 0+60 – 1+05)

4-inch P-401 (PG 76-22)
5-inch P-403 (PG 76-22)

30-inch P-209

P-152

Figure 31. Pavement Structure for CC-9 LFS-2S (left) and FWD at NAPTF (right)
(Bazi, Saboundjian, Bou Assi, & Diab, 2020)

A plot of the deflection basins at three load levels, ranging from 13 kips to 37 kips, is shown in
Figure 32. Overall, the FWD-measured surface deflections were relatively small due to thick and
stiff pavement structure at the tested temperature; where a mid-depth AC temperature of 50 °F, a
surface temperature of 52 °F, and an air temperature of 54 °F were recorded at the time of testing
(11:24 AM).

Figure 32. Deflection Basins for CC-9 LFS-2S at Three Load Levels on December 30, 2019
(Bazi, Saboundjian, Bou Assi, & Diab, 2020)

Figure 33 shows the surface moduli plot as determined using the Boussinesq equations, where
the calculation is based on the FWD load and the corresponding surface deflections. The surface

51

moduli at the center of the FWD load plate were calculated using the Boussinesq distributed load
equation, whereas the surface moduli at any radial distance from the center of the load plate are
calculated using the Boussinesq point load equation. The surface moduli provide equivalent
stiffness assuming the pavement is composed of a semi-infinite half-space.

The FWD loads, for the various drops, were proportional to the surface deflections resulting in
almost identical surface moduli. This observation also indicates that the pavement materials
mainly behave as stress-independent materials (Bazi, Gagnon, Sebaaly, & Ullidtz, 2020).

Figure 33. Surface Moduli for CC-9 LFS-2S at Three Load Levels on December 30, 2019
(Bazi, Saboundjian, Bou Assi, & Diab, 2020)

The dynamic backcalculation was performed for the three load levels using the recommended
parameters from the previous section, except for DminL and VminL because those parameters are
not present for this thick and stiff structure.

The backcalculated layer variables (moduli) are presented in Table 8, where the AC moduli are
reported at the tested temperature of 50 °F and at a frequency of 17 Hz, where the 17 Hz is
considered to be the most dominant FWD frequency (Sebaaly et al., 1985 and 1986; Kim, Xu, &
Kim, 2000; Chatti & Lei 2012; Bazi & Bou Assi, 2022; Fu et al., 2020).

The Rayleigh damping coefficients, βR, are determined as 0.0034 and 0.0023 for the P-209 and
P-152 layers, respectively, and are kept constant for the various drop levels to have a one-to-one
comparison of the layer moduli.

[Average surface
moduli from 3 drops]

52

Table 8. Backcalculated Layer Moduli

Layer

CC-9 LFS-2S Station 0+85 Offset +15S
Load Level
= 13 kips

Load Level
= 25 kips

Load Level
= 37 kips

AC
[P-401/P-403]1 1,170 ksi at 17 Hz 1,130 ksi at 17 Hz 1,100 ksi at 17 Hz

Crushed Aggregate Base
[P-209] 46.8 ksi 42.8 ksi 41.6 ksi

Subgrade [P-152] 13.9 ksi 13.1 ksi 12.7 ksi

RMSRE DPeak only 3.9% 3.2% 3.1%
All parameters 2.9% 3.2% 3.6%

1The P-401/P-403 asphalt surface and asphalt base layers were combined during backcalculation.

The root-mean-square relative errors (RMSREs) between the measured and calculated
parameters, as reported in Table 8, are acceptable for the three load levels by considering the
peak deflections (DPeak only) and by considering all FWD parameters used in the
backcalculation. The calculated and measured time histories at the first load level of 13 kips are
shown in Figure 34, where the fit is adequate. It is important to note that several parameters are
being fitted by varying the pavement variables, and this process does not simply consider the
peak deflections (DPeak) used in static backcalculation or the peak deflections and time lag used
in traditional dynamic backcalculation.

53

(a) 0-inch

(b) 12-inch

(c) 24-inch

54

(d) 36-inch

(e) 60-inch

(f) 72-inch

Figure 34. Measured vs Calculated FWD Deflections at 13 kips for December 30, 2019
(Bazi, Saboundjian, Bou Assi, & Diab, 2020)

55

A comparison of the crushed aggregate base (P-209)- and subgrade (P-152)-layer moduli at the
various load levels in Table 8 shows that the unbound layers are slightly stress-dependent, where
the moduli decrease for an increase in load level. The moduli stress-softening is about 10 percent
for a 185 percent increase in load level, and this behavior can only be captured by analyzing the
FWD data at different load levels.

Fine-grained materials (e.g., P-152) typically exhibit stress-softening behavior, which was
confirmed from dynamic backcalculation for the subgrade layer. Conversely, coarse-grained
materials (e.g., P-209) typically exhibit stress-stiffening behavior based on laboratory testing, but
this observation is contrary to the results obtained from dynamic backcalculation. Overall,
coarse- and fine-grained materials exhibited a mildly stress-softening behavior based on dynamic
backcalculation. This observation was also reported in previous research for an LTPP section
(Bazi, Saboundjian, Bou Assi, & Diab, 2020).

In the same LTPP study, it was shown that the confinement effect resulting from the stiffness of
the layers above an unbound layer has a major effect on that layer. The confinement effect,
which is more pronounced than the mild stress-softening effect, was not studied for the FAA
section since the temperatures during the two FWD testing periods (December 2019 and January
2020) were identical, resulting in similar AC moduli and confinement.

Triaxial resilient modulus testing was performed by the FAA on the P-152 subgrade material at
different combinations of confining and cyclic stresses in accordance with American Association
of State Highway and Transportation Officials (AASHTO) T 307-99 (2021). Figure 35 shows a
plot of the subgrade resilient moduli vs the cyclic (deviatoric) stresses at three confining stresses
(S3) of 6 psi, 4 psi, and 2 psi. A stress-softening behavior was observed, which is expected for a
fine-grained material.

The figure also shows the backcalculated subgrade layer moduli at the three load levels of
13 kips, 25 kips, and 37 kips. The moduli are plotted against the calculated maximum vertical
stresses due to the FWD loading on top of the subgrade layer, as obtained from the FE model.
The mild nonlinearity of the backcalculated subgrade layer moduli is visible, and the moduli
match, to a certain extent, the triaxial resilient moduli at a confining stress of 2 psi.

56

Figure 35. P-152 Moduli from Triaxial Testing and Dynamic Backcalculation
(Bazi, Saboundjian, Bou Assi, & Diab,2020)

Finally, the backcalculation was also performed using state-of-the-practice software based on
static analysis. Unreliable subgrade moduli were obtained for the various drops using the static
analysis, where the subgrade moduli were higher by a factor of 2 to 2.5 when compared to the
dynamic backcalculation results. Such variation is expected for rigid pavements or thick and stiff
flexible pavements that are common for airport pavement structures (Bazi, Gagnon, Sebaaly, &
Ullidtz, 2020). It is important to note that the subgrade moduli obtained from static
backcalculation are almost equal to the surface moduli for the outer sensors, as depicted by
Figure 33.

5. OPTIMIZATION TECHNIQUE

Optimization is the act of obtaining the best result under given circumstances. An optimization
problem consists of maximizing or minimizing a real function by systematically choosing input
values from within allowed ranges to compute the value of the function.

Optimization techniques are used in the backcalculation process to estimate the pavement layers
variables that would minimize the error between the measured and calculated FWD deflection
time histories, or, more specifically, between time histories parameters. In this application, the
layers variables are denoted as 𝑉𝑉, and the evaluation parameters are denoted as 𝑃𝑃. For a given
load 𝐷𝐷, modeling the FWD testing is formulated as a mapping 𝑀𝑀(𝐷𝐷,𝑉𝑉) → 𝑃𝑃. If the measured
FWD data are denoted as 𝑃𝑃�, the modeling error is computed by RMSRE (Khetan & Karnin,
2020) as:

𝐿𝐿�𝑃𝑃,𝑃𝑃�� = �1
𝑛𝑛
∑ �𝑃𝑃𝑖𝑖−𝑃𝑃

�𝑖𝑖
𝑃𝑃𝑖𝑖

�
2

𝑛𝑛
1 (83)

57

Thus, the optimization problem of the backcalculation process is formulated as:

argmin
𝑉𝑉

𝐿𝐿�𝑀𝑀(𝐷𝐷,𝑉𝑉),𝑃𝑃�� (84)

5.1 FULLY AUTOMATED AND GENERAL OPTIMIZATION FRAMEWORK

The research team developed a fully automated and general optimization framework to bridge
the PULSE application and various optimization methods. The framework has three main
components: (1) an input generator, (2) a middleware integrated with PULSE, and (3) a cross-
platform plugin interface. This optimization framework enables automated generation of input
data, easy incorporation of any optimization algorithms in implementations (supporting different
programming languages), and construction of the entire workflow in a fully automated manner.
Figure 36 shows an overview of the fully automated and general optimization framework
developed in this research effort.

Figure 36. Overview of the Optimization Framework

5.1.1 Motivation of the Optimization Framework

The PULSE application, programmed in C#, can only handle a specific optimization method
implemented in the C# programming language. This study evaluated the implementation of
different optimization methods. However, some optimization methods are difficult to implement
in the C# programming language. For example, the machine-learning-based optimizer,
Reinforcement Learning, is one of the approaches the researchers plan to develop. Yet its
implementation relies heavily on deep-learning frameworks, such as TensorFlow (Abadi et al.,
2016) or PyTorch (Paszke et al., 2019), which are programmed only for Python and C++
languages. Given these deep-learning frameworks have huge codebases (developed by thousands
of full-time engineers in several years) and are optimized by numerous hardware-level
techniques, it is not feasible to import them into C#. Therefore, it is critical to have a framework
that can accommodate optimizers in different programming languages and become compatible
with PULSE.

58

In addition, it is important to automate the optimization workflow. As shown in PULSE 2020
flowchart (Figure 25), several steps in the workflow need significant amounts of manual effort,
which can be time-consuming. Examples include (1) creating structure and mesh using Gmsh
(refer to Section 3.1 for more details), and (2) preparing the input files for FE solver. These
manual tasks can become a bottleneck as different optimization methods are evaluated and many
experiments need to be performed, which could take a significant amount of time to complete.
Fully automating the workflow would significantly speed up the development and evaluation
process of different optimization methods.

5.1.2 Input Generation Framework

To develop and evaluate the optimization methods, several input files need to be generated and
prepared for the FE solver (mainly PULSE_FE, or ABAQUS for verification). The backbones of
the pavement structures (e.g., points, lines, surface) are first calculated and modeled with the aid
of Microsoft® Excel®. Then the information is manually imported into Gmsh (Geuzaine &
Remacle, 2009) to mesh the pavement structure. To prepare the final input files, the users need to
manually analyze the generated meshing and retrieve the following information for the FE
solver: the starting/ending indexes for each element set, nodes on the far boundary, nodes on the
axis of symmetry, evaluation nodes, and elements on the far boundary. Such manual efforts
usually take at least 10 minutes even for experienced users, which is time-consuming and labor
intensive to complete a large number of experiments.

To relieve the burden on the users and speed up the process of generating and preparing input
files, an input generation framework that can automate this process and reduce the time to less
than 10 seconds was developed as part of this study. Figure 37 demonstrates an overview
comparison of the previous manual input framework and the new fully automated input
generation framework. The following sections present details on each step.

Figure 37. Overview Comparison of the Previous Manual Input Framework and the New, Fully
Automated Input Generation Framework (Bazi, Saboundjian, Bou Assi, & Diab, 2020)

59

5.1.2.1 Pavement Structure Model

In the previous workflow, Excel was manually invoked to prepare the pavement structure
backbones (e.g., points, lines, and surface) to be meshed. Automating this step is quite
challenging given the large number of built-in equations and calculations, and Excel is well
known to be automation unfriendly. To solve this challenge, Excel was programmed through the
component object model (COM) provided by Windows. The COM is a platform-independent,
distributed, object-oriented system for creating interactive binary software components. COM is
the base of Microsoft’s Object Linking and Embedding (OLE) (compound documents) and
ActiveX (Internet-enabled components). COM objects can be created with a variety of
programming languages. Specifically, the input-generation framework binds Excel by its ProgID
as a COM object. By using COM, the input-generation framework has full control over Excel. In
this manner, the input-generation framework can fill in the variables to the Excel file, and then
Excel can perform the calculations to get the final output for developing the mesh. Given the
calculation part is exactly the same, the results will be consistent with those from the manual
process.

5.1.2.2 Developing the Mesh

To eliminate the manual operation on Gmsh, a Python wrapper of the Gmsh Software
Development Kit (SDK) was developed. Specifically, the input-generation framework reads the
pavement structure (e.g., points, lines, and surface) from the Excel output in previous step and
composes a *.geo file as the input to Gmsh. Then, the input-generation framework calls the
Gmsh application programming interface to synchronize its internal CAD representation with the
Gmsh model, which creates the relevant Gmsh data structures for deriving the 2D meshing. The
meshing using the new generation framework was compared to and checked against the manual
generation meshing, which showed excellent agreement.

5.1.2.3 Analysis

The input-generation framework performs a series of analyses that resemble the manual efforts
once the generated nodes and elements are acquired from Gmsh. Given the time-consuming
nature of these analyses, automating these steps can save much of the manual effort and make
the whole process much faster. Figure 38 shows the necessary analysis steps to compose the final
input file. A few key steps are highlighted here: (1) locate the start and end elements for each
surface to compose the element sets (each layer), (2) calculate distance from origin for each node
to filter out the nodes on the far boundary, (3) find out nodes on the y-axis but not on far
boundary, and (4) find out nodes and elements on the pavement surface where the simulated
FWD load is applied.

60

Figure 38. Necessary Analysis Steps to Compose the Final Input File

5.1.2.4 Evaluation

As a key component of the optimization framework, it is important for the input-generation
framework to complete the generation workflow in a fast manner. The performance of the input-
generation framework was evaluated on a workstation with Intel Core i7-8700 Processor and 16-
GB memory. A virtual machine with Windows 10 version 2004 was used. The evaluation
included 30 independent runs of using the input generation framework to compose the
ABAQUS-style input for a three-layer pavement structure. The clock running time for each run
is shown in Figure 39. As shown in the figure, all 30 runs finished within 3 seconds, which is a
significant speedup compared with the manual processing that usually takes about 10 minutes.
Note that the time shown here also includes the time used in external applications such as Excel
and Gmsh.

Figure 39. Running Time of Input Generation Framework for 30 Runs to Generate Input for a
Three-Layer Pavement Structure

5.1.3 PULSE Application Wrapper

The PULSE application wrapper was developed to automatically parse the configurations for
PULSE_FE from ABAQUS-style inputs and to bridge the output from PULSE_FE to
PULSE_Analyzer. The PULSE_FE is a powerful and better replacement for ABAQUS. It is

61

faster and easier to use. The downside is that it requires users to manually read some parameters
from input files, like the ABAQUS format, and feed them to PULSE_FE (refer to Section 3 for
more details). The developed PULSE application wrapper can automate this process to greatly
improve user experience by offering a one-stop solution. It automatically converts the ABAQUS
inputs to the final calculated parameters and hides all details from users. Table 9 lists the
PULSE_FE parameters that can be automatically parsed from ABAQUS inputs by the developed
PULSE application wrapper.

Table 9. Parameters that can be Automatically Parsed from ABAQUS Input Files

Parameter
Name Data Type Explanation

layerElements Dictionary The index of all elements of a certain layer
NsetFarBoundary List The index of nodes on the far boundary
NsetSymmetry List The index of nodes on the axis of symmetry (Y axis)
ElsetLoad List The index of elements on the X axis
surfaceNumber String Surface number to indicate where pressure is applied
surfacePressure Double The pressure applied to the surface
ampIN Dictionary FWD amplitude data

This list covers most of the parameters that are available in ABAQUS input files. By
automatically parsing these parameters, considerable amount of manual parsing efforts is
avoided. Combining with the aforementioned input generation framework, these two techniques
together make the entire simulation and analysis workflow fully automated. Specifically, with a
set of input variables, the framework derives the corresponding calculated parameters after the
finite element modelling without manual assistance.

5.1.4 Cross-Language Plugin Interface

The core functionality of the optimization framework lies in its ability to work with optimizers
from different programming languages. To achieve this goal, a cross-language plugin interface
was developed with three key features: (1) a cross-language protocol that allows the exchange of
arbitrary basic data types and even complex or custom data structures such as dictionary, objects,
and class; (2) a flexible scalar/vector interface that was designed to be compatible with
optimizers regardless of whether they expect vector or scalar output, and (3) a client-server
design that allows the optimizer to be placed on remote server or even cloud servers. Each
feature is briefly described in the following sections.

5.1.4.1 Data Structure Exchange Protocol

Passing data from one programming language to another is challenging as they are represented
and stored in quite different ways. Thus, it is important to have an intermediate layer that can
connect different programming languages. The developed plugin interface employs the JSON
(JavaScript Object Notation) protocol, which is a lightweight data-interchange format that is
broadly supported by multiple programming languages including C#, C++, Java, Python (Pezoa,
et al., 2016). JSON uses a text-based approach to store data, which makes the programming
language irrelevant and the information readable for human audiences. The basic data types in

62

JSON are string, number, bool, and null. The fundamental data structures for JSON are (1) a
collection of name/value pairs, which in other programming languages would be interpreted as
object, record, struct, dictionary, hash table, keyed list, or associative array; and (2) an ordered
list of values that are commonly interpreted as array, vector, list, or sequence. Note that the data
structures can be nested, which enables JSON to store and represent complex data structure or
classes.

5.1.4.2 Flexible Scalar/Vector Interface

Different optimizers are designed for different types of optimization problems. Some optimizers
can correctly handle the case where the optimization target is a vector (a series of values),
whereas a more common case is when the target is a scalar (a single value). To accommodate
different optimizers, the interface is implemented to have two sets of outputs: a vector of
calculated parameters and a scalar RMSRE calculated from difference between the calculated
parameters and the measured parameters from FWD surface deflections. Thus, for vector-based
optimizers like Newton’s method, they have all the needed details, which leads to fast
convergence. For scalar-based optimizers like Bayesian and Reinforcement Learning, they use
the RMSRE scalar, so they can still work well.

5.1.4.3 Client-Server Design

In the ideal case, the PULSE and optimizer would run side-by-side on the same device for a
seamless data exchange and latency-free feedback. However, sometimes the optimization
problem can be complex, and its resource demands can go beyond the capacity of a single
machine. The plugin interface provides extra flexibility for this scenario by using a client-server
design that can have PULSE and the optimizer run on different machines. The text-based data
exchange protocol JSON ensures that the data exchange can stay untouched even if the sender
and receiver are from different machines. This enables the user to offload the computation of
optimizer to a remote server or even cloud to improve the optimization speed.

5.1.5 Summary

The complete overview of the optimization framework is shown in Figure 40. The overall
workflow of the developed optimization framework is summarized as follows:

• Step 1. PULSE gives an initial start point (a set of variables) 𝑥𝑥0 and passes it to the
optimizer through the cross-language plugin interface.

• Step 2. The optimizer decides the next point to try 𝑥𝑥𝑡𝑡+1, and passes it to input generation
framework through the cross-language plugin interface.

• Step 3. Input generation framework performs the analysis to prepare the ready-to-use
inputs to PULSE application wrapper.

• Step 4. PULSE application wrapper performs the FE modeling and analyzes the results
using PULSE Analyzer to get the final calculated parameters and pass it to optimizer
through the cross-language plugin interface.

• Step 5. Optimizer checks the calculated parameters to see whether the optimization
process has converged. If not, the process goes back to step 2.

63

Figure 40. Complete View of All Components of Optimization Framework.

5.2 OPTIMIZATION PROBLEM FORMULATION

This section presents two problem formulations that correspond to two different types of
optimization strategies. In both formulations, the choice of parameters is consistent with the
previous analysis in Section 4.

5.2.1 Vector-Based Problem Formulation

For the optimizers that can work with vector outputs, the optimization target is to have the
calculated parameters approach the measured parameters as close as possible. Thus, the problem
is formulated as:

𝑷𝑷𝒄𝒄����⃗ = 𝑓𝑓(𝑽𝑽��⃗) (85)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ||𝑷𝑷𝒄𝒄����⃗ − 𝑷𝑷𝒎𝒎������⃗ || 𝑤𝑤. 𝑟𝑟. 𝑡𝑡. 𝑽𝑽��⃗ ∈ 𝑹𝑹 (86)

where 𝑓𝑓 is the abstraction of the process of input generation, FE modeling, and parameter
analysis. 𝑽𝑽��⃗ is the variables vector, 𝑷𝑷𝒄𝒄����⃗ is the calculated parameters vector, and 𝑷𝑷𝒎𝒎������⃗ is the
measured parameters vector. Due to differences in scales of the parameters, the optimizers
potentially focus more on the large-scale variables. Fortunately, the proposed Newton’s method
is based on individual gradients, which are robust to the variables’ scales. This problem is solved
by using normalization techniques.

5.2.2 Scalar-Based Problem Formulation

A more general formulation is where the optimizers expect the output to be a scalar so that the
output vector can be wrapped by RMSRE. The optimization target is thus to minimize the
RMSRE scalar between the calculated parameters and the measured parameters. The problem
formulation is defined as follows. Note that the optimization target is the RMSRE value, which
is a scalar.

64

𝑷𝑷𝒄𝒄����⃗ = 𝑓𝑓(𝑽𝑽��⃗) (87)

𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑷𝑷𝒄𝒄����⃗ ,𝑷𝑷𝒎𝒎������⃗ � = �1
𝑛𝑛
∑ �𝑃𝑃𝑐𝑐

𝑖𝑖−𝑃𝑃𝑚𝑚𝑖𝑖

𝑃𝑃𝑚𝑚𝑖𝑖
�
2

𝑛𝑛
𝑖𝑖=1 (88)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅 𝑤𝑤. 𝑟𝑟. 𝑡𝑡. 𝑽𝑽��⃗ ∈ 𝑹𝑹 (89)

5.2.3 Comparison of the Two Formulations

Each of the aforementioned formulations has advantages and disadvantages. For the vector-based
problem formulation, the key advantage is that it reveals more details and avoids the ill-condition
issue. For example, suppose at point X the measured parameters are a, b, and c; then the
optimizer tries a nearby point Y, which gives estimated parameters of 1.1a, 0.9b, and c. For the
vector-based problem formulation, the change from X to Y leads parameter a to increase and b to
decrease. However, for the scalar-based problem formulation the two calculated parameters at
points X and Y might give similar RMSRE values, which does not give explicit clues to the
optimizer about the possible impact of the change from X to Y. Such confusion could mislead
the optimizer to make wrong optimization decisions and thus achieve suboptimal results. A key
advantage of the scalar-based problem formulation is its generalization. Almost all optimizers
can work with the scalar-based problem formulation, yet only a few can handle the vector-based
problem formulation. Especially for the learning-based optimizers, they are designed to work on
scalar outputs. Considering the reasons stated, both problem formulations are implemented in
this study.

5.3 TRADITIONAL OPTIMIZERS—NEWTON-RAPHSON METHOD

With the help of the developed optimization framework, several different optimizers from the
family of Newton-Raphson are implemented and evaluated (Ypma, 1995). The Newton-Raphson
method is a classic numerical/mathematical-based optimization method.

The Newton-Raphson method, also called Newton’s method, is an iterative algorithm that
gradually approaches the root of target function by computing its derivative. Based on whether
the target function is the optimization target itself or its derivative, the Newton’s method is
categorized into first-order Newton’s method (also known as the root-finding algorithm) and
second-order Newton’s method (the optimization algorithm). Note that the first-order Newton’s
method is the default optimization approach in PULSE.

5.3.1 First-Order Newton’s Method

The intuition of the first-order Newton’s method is straightforward. For example, suppose there
is a point 𝑥𝑥𝑛𝑛 on function 𝑓𝑓. The x-intercept of its tangent line is likely to be closer to the root of
𝑓𝑓 (see Figure 41 for an example). Thus, by iteratively doing this, one can get closer to the root
that solves the problem.

65

Figure 41. Example of How Newton’s Method Approaches the Root of a Quadratic Function
from Initial Point x = 5

In a former way, Taylor’s expansion is used on function 𝑓𝑓(𝑥𝑥) at 𝑥𝑥𝑛𝑛 :

𝑦𝑦 = 𝑓𝑓(𝑥𝑥𝑛𝑛) + 𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛) + 1
2
𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛)2 + ⋯ (90)

Ignoring the higher-order items in Equation 90 gives the tangent line of 𝑥𝑥𝑛𝑛:

𝑦𝑦 = 𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛) (91)

The goal is to get the x-intercept (the 𝑥𝑥 that makes 𝑦𝑦 = 0). By denoting the x-intercept as 𝑥𝑥𝑛𝑛+1,
the y function becomes:

𝑦𝑦 = 𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛) + 𝑓𝑓(𝑥𝑥𝑛𝑛) = 0 (92)

Thus, the updated equation for first-order Newton’s method is:

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 (93)

In the subject problem, for the scalar-based problem formulation, the updated equation is:

𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 −
𝑓𝑓(𝑽𝑽𝒏𝒏)
𝑓𝑓′(𝑽𝑽𝒏𝒏)

 (94)

where 𝑽𝑽𝒏𝒏 is the current variables and 𝑽𝑽𝒏𝒏+𝟏𝟏 is the variables to try next. Given 𝑅𝑅 = 𝑓𝑓(𝑽𝑽𝒏𝒏) is a
scalar, the corresponding derivative 𝑓𝑓′(𝑽𝑽𝒏𝒏) is a vector commonly called gradient.

For the vector-based problem formulation, the multivariable equation is:

𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 − 𝑱𝑱−𝟏𝟏(𝑽𝑽𝒏𝒏)𝒇𝒇(𝑽𝑽𝒏𝒏) (95)

66

It is different from the scalar-based equation as the 𝒇𝒇(𝑽𝑽𝒏𝒏) is a vector that makes its derivative
𝑱𝑱(𝑽𝑽𝒏𝒏) a matrix called the Jacobian matrix. To adapt to matrix operations, the division becomes a
left-multiplying of the inverse of Jacobian matrix and the corresponding vector output.

For a multivariate Newton optimization problem, the transition from a scalar variable, xn, to a
vector, Vn , necessitates a corresponding transformation of the scalar derivative, 𝑓𝑓′(𝑥𝑥𝑛𝑛), into the
Jacobian matrix, 𝑱𝑱(𝑽𝑽𝒏𝒏). Consequently, leveraging matrix operations become feasible, wherein
the inversion of the Jacobian matrix, 𝑱𝑱−𝟏𝟏(𝑽𝑽𝒏𝒏), followed by its multiplication with the vector,
𝒇𝒇(𝑽𝑽𝒏𝒏), facilitates the derivation of the succeeding optimal solution, Vn+1, as shown in equation
95. Multivariate optimization, though derived from single-variable optimization, is distinguished
by its transition from scalar output and scalar derivative to vector output and matrix derivatives.

The advantage of the first-order Newton’s method is its simplicity and the ability to work with
vector-based problem formulation. The drawbacks include the dependence on derivative, which
is often not available or hard to get for optimization problems (including the subject problem),
and the sensitivity to the choice of initial point. In addition, the first-order Newton’s method does
not provide convergence guarantee.

5.3.2 Second-Order Newton’s Method

The second-order Newton’s method focuses on finding the root of target function. In some
scenarios, the target is more than just the root but the stationary (maximal/minimal) points of the
target function. Given that the maximal/minimal points are only achieved when the derivative is
zero, finding the root of the derivative means finding the maximal/minimal points of the target
function. Recalling the Taylor expansion from first-order Newton’s method:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥𝑛𝑛) + 𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛) + 1
2
𝑓𝑓′(𝑥𝑥𝑛𝑛)(𝑥𝑥 − 𝑥𝑥𝑛𝑛)2 + ⋯ (96)

Truncating high-order items and applying the derivative gives:

𝑦𝑦′ = 𝑓𝑓′′(𝑥𝑥𝑛𝑛)(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛) + 𝑓𝑓′(𝑥𝑥𝑛𝑛) = 0 (97)

Thus,

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓′(𝑥𝑥𝑛𝑛)
𝑓𝑓′′(𝑥𝑥𝑛𝑛)

 (98)

where 𝑓𝑓′′(𝑥𝑥𝑛𝑛) is the second derivative of the target function 𝑓𝑓, which is why the method is
named the second-order method. For the scalar-based problem formulation, the update equation
is:

𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 − 𝑯𝑯−𝟏𝟏(𝑽𝑽𝒏𝒏)𝑓𝑓′(𝑽𝑽𝒏𝒏) (99)

Similar to the first order’s formulas, 𝑽𝑽𝒏𝒏 represents the current variables, and 𝑽𝑽𝒏𝒏+𝟏𝟏 represents the
variables to try next, and the division becomes a left-multiplying of the inverse. Here, the
second-order derivative 𝑯𝑯(𝑽𝑽𝒏𝒏) is called the Hessian matrix. For the vector-based problem
formulation, the update equation is:

67

𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 − 𝑯𝑯−𝟏𝟏(𝑽𝑽𝒏𝒏)𝑱𝑱(𝑽𝑽𝒏𝒏) (100)

Here, the second-order derivative 𝑯𝑯(𝑽𝑽𝒏𝒏) is the Hessian tensor. Compared with the first-order
method, the second-order method is less sensitive to the choice of initial point and can work on
complex/large-scale optimization problems. However, the Hessian matrix is a p-by-p matrix
where p is the number of variables. For large number of variables, computing, inverting, and
storing the Hessian matrix can be very expensive and, in some cases, unfeasible.

5.3.3 Finite Difference

Newton’s method, either the first or second order, depends on the derivatives. Yet the target
function in the optimization framework is an abstract of the process of input generation, FE
modeling, and deflection analysis, which is non-differentiable. Thus, the finite difference is used
as an approach to approximate the derivative of the target function. Commonly used finite
difference types include forward-difference, backward-difference, and central-difference.
Researchers use forward-difference to reduce the number of function evaluations during
optimization. The forward-difference equation is:

𝑓𝑓′(𝑥𝑥) ≈ 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(ℎ)
ℎ

 (101)

where ℎ is the step size. Typically, 1 percent of 𝑥𝑥 is used as the step size but, for some variables,
special values are used to make the approximation more accurate.

5.3.4 Implementation

With the cross-language optimizer interface, the optimizers can be implemented in any
programming language. The Newton’s method optimizers are implemented in Python to leverage
its high-performance matrix operation such as matrix multiplication and inversing and the built-
in Lambda function factory, which makes computation of higher-order derivatives much faster.
A high-level example of the optimizer workflow is shown in Figure 42.

Figure 42. Code Snippet of Newton Optimizer Implementation

68

5.3.5 Evaluation

The Newton method optimizers are evaluated using both a synthetic one-layer pavement
structure and a synthetic three-layer pavement structure. Overall, the evaluation results suggest
that the implementation of the optimization framework and the optimizers are correct and
effective. The evaluation on real-world measured data is also conducted.

5.3.5.1 One-Layer Pavement Structure

The evaluation of the one-layer pavement structure is performed to check the correctness of the
developed optimizer since the ground truth can be easily derived. The target vertical deflections
that are supposed to be fitted are shown in Figure 43. These curves are generated by using the
following variable set {E = 20,000 psi, Rayleigh alpha = 20, Rayleigh beta = 0.002}. The
optimizers are given initial variables set of {E = 5,000 psi, Rayleigh alpha = 5, Rayleigh beta =
0.006}, and they are expected to tweak the variables to recover the ground truth variable set that
is used to generate target vertical deflections. Note the ground truth variables are unknown to the
optimizers.

Figure 43. Synthetic Vertical Deflections for One-Layer Pavement Structure

The first-order Newton optimizer is first evaluated using both the scalar- and vector-based
formulations, as shown in Figures 44 and 45, respectively. As the optimization progress curves
show, the Newton optimizer can reduce the RMSRE to less than 0.1 percent (more than 99.9
percent accuracy) in both scalar- and vector-based formulations, yet the convergence rate (speed)
differs. Specifically, the Newton optimizer on scalar-based formulation takes 30 iterations to
converge to a reasonably good RMSRE, and the final recovered variables are {E: 19980,
Rayleigh alpha: 20.755, Rayleigh beta: 0.001979}; whereas the Newton optimizer on vector-
based formulation takes only 5 iterations to converge to a similarly good RMSRE level. This

69

difference in speed matches the previous theoretical analysis. Note that because derivatives are
approximated by finite difference, the vector-based formulation would need more calls to the
target function. For example, in scalar-based formulation, the number of calls it takes to get the
derivative (gradient) is equal to the number of variables plus one; whereas in vector-based
formulation, the number of calls it takes to get derivative (Jacobian matrix) is equal to the
number of variables multiplied by the number of parameters. That means the actual difference
between these two formulations is smaller than it appears.

Figure 44. First-Order Newton Optimizer Fitting One-Layer Pavement Structure using Scalar-
Based Problem Formulation

Figure 45. First-Order Newton Optimizer Fitting One-Layer Pavement Structure using Vector-
Based Problem Formulation

70

The second-order Newton optimizer is also evaluated using the vector-based problem
formulation. The results are shown in Figure 46, which indicates that its convergence is not as
fast as the first-order methods. Researchers attempted to adjust the selection of parameters (see
Section 4.4), but observed results were not better than the first-order method.

Figure 46. Second-Order Newton’s Method Optimizer Fitting One-Layer Pavement Structure
using Vector-Based Problem Formulation

5.3.5.2 Three-Layer Pavement Structure

Next, a more complicated three-layer pavement structure was evaluated. The target vertical
deflections that were to be fitted are shown in Figure 47. These curves are generated by using the
variables set shown in Table 10.

Similar to the one-layer case, the ground truth variables set that is used to generate the target
vertical deflections was targeted. Note the ground truth variables are also unknown to the
optimizers.

71

Figure 47. Synthetic Vertical Deflections and FWD Loading Time Histories for Three-Layer

Pavement Structure

Table 10. Results of First-Order Newton Optimization Performance in Three-Layer System

Layer Variable
Target
Value

Seed
Value

Recovered
Value by
Optimizer

AC
Sigmoidal function
coefficients

delta –0.134 –1 –0.920
alpha 3.703 4.65 4.941

betaPrime –0.465118 –
0.265118 –0.468556

gamma –0.548 –0.65 –0.398
Modulus at 17 Hz (ksi) E1 469 286 447

Base
Modulus (ksi) E2 40 50 40
Rayleigh Damping
Coefficient βR Bbase 0.002 0.003 0.00193

Subgrade
Modulus (ksi) E3 5 7 5
Rayleigh Damping
Coefficient βR BSG 0.002 0.001 0.00197

For the first-order Newton optimizer on vector-based problem formulation, the setting that works
best in the one-layer structure is evaluated for the three-layer system. The optimization history of

72

40 iterations is shown in Figure 48. The final RMSRE is 0.056 percent (over 99.9 percent
accuracy). The final recovered variables are:

• Delta = –0.92007093
• Alpha = 4.49417398
• BetaPrime = –0.46855696
• Gamma = –0.39846419
• E2 = 40,229.533 psi
• BBASE = 0.0019321
• E3 = 5,000.955 psi
• BSG = 0.0019732

The robustness of Newton’s method is tested when the seed variables are arbitrary. The
evaluation is performed again with native seeds (See Table 11), and it converges with RMSRE of
0.0758 percent. The results suggest that Newton’s method is robust to different seed values.

It can be concluded that even for the much more complicated three-layer system with eight
variables, the first-order Newton’s method is still capable of recovering the ground truth
variables. Further evaluation using real-world measured data is conducted.

Figure 48. First-Order Newton’s Method Optimizer Fitting Three-Layer Pavement Structure
under Vector-Based Problem Formulation

73

Table 11. Cross-Comparison of Optimization Performance in Three-Layer System with
Unoptimized Seeds

Layer Variable
Target
Value

Seed
Value

Recovered
Value by
Optimizer

AC Sigmoidal coefficients

delta –0.134 0 0.937
alpha 3.703 1 1.998
betaPrime –0.465118 0 0.421
gamma –0.548 0 –2.165

Modulus at 17 Hz (ksi) E1 469 3 553.6

Base
Modulus (ksi) E2 40 50 39.6
Rayleigh Damping
Coefficient βR Bbase 0.002 0.003 0.0021

Subgrade
Modulus (ksi) E3 5 7 4.9
Rayleigh Damping
Coefficient βR BSG 0.002 0.001 0.002

The second-order Newton’s method is also evaluated with the three-layer system and the results
are shown in Figure 49. It was observed that the second-order method did not progress with a
stable convergence. This could be improved by integrating a line search algorithm to adjust the
step size of second-order Newton’s method, which is also known as damped or relaxed Newton’s
method. In damped Newton’s method, the updated equation is:

𝑽𝑽𝒏𝒏+𝟏𝟏 = 𝑽𝑽𝒏𝒏 − 𝛾𝛾𝑯𝑯−𝟏𝟏(𝑽𝑽𝒏𝒏)𝑓𝑓′(𝑽𝑽𝒏𝒏)

where 0 < 𝛾𝛾 < 1. This extra parameter 𝛾𝛾 is to help Newton’s method converge better when
facing overlarge gradient values. There is an example in Appendix A.

74

Figure 49. Second-Order Newton’s Method Optimizer Fitting Three-Layer Pavement Structure
under Vector-Based Problem Formulation

5.3.5.3 Evaluation of Field-Measured Deflection Data

Researchers further evaluated the performance of the Newton’s method optimizers with field-
measured deflection data on a three-layer flexible pavement system. The field-measured data
were obtained from the LTPP database for test section 46-0804 in South Dakota. The section was
built in June 1993, and it consisted of a 7.1-inch AC layer and a 12-inch unbound, granular base
layer built over an untreated, silty clay subgrade. The FWD data used in this study were collected
on June 8, 1994, using a Dynatest® FWD, on the eastbound lanes at milepost 400 of South
Dakota Highway 1804, which is 5.5 miles northwest of Pollock, South Dakota. The surface and
air temperatures at the time of testing were 48 °F and 57 °F, respectively. The measured
deflections are shown in Figure 50.

Both vector- and scalar-based problem definitions were evaluated on the measured data. For the
vector-based problem definition, the optimization progress of first-order Newton’s method is
shown in Figure 51. As the figure shows, the first-order Newton’s method works well for field
data. Specifically, the optimization progress converges at iteration 3, which indicates the power
of Newton’s method optimizer.

The final results are shown in Table 12 with a final RMSRE of 0.007 percent. From the
perspective of function evaluations, the Newton’s method achieves the RMSRE with less than 25
function evaluations, as shown in Figure 52, which demonstrates its efficiency.

Given the promising results of Newton’s method with the vector-based problem definition, both
first- and second-order Newton’s method with scalar-based problem definition were further
evaluated. Both methods diverged at iteration 1 when working on field data. This evaluation

75

shows the limitations of Newton’s method when working with scalar-based problem definition
and the necessity of using different problem definitions for different optimizers.

Figure 50. Field-Measured Deflections and FWD Loading Time Histories from an Actual Three-
Layer System

Figure 51. First-Order Newton’s Method Optimizer Fitting Field Deflection Data on a Three-
Layer Pavement under Vector-Based Problem Formulation

76

Figure 52. First-Order Newton Optimizer Fitting Field Deflection Data on a Three-Layer
Pavement under Vector-Based Problem Formulation with Respect to Number of Function

Evaluations

Table 12. Final Results of First-Order Newton’s Method on Field-Measured Data with Vector-
Based Problem Definition

Layer Variable
Seed
Value

Recovered Value by
Optimizer

AC Sigmoidal coefficients

delta –0.9 –1.068
alpha 4.5 5.160
betaPrime –0.7 –0.6974
gamma –0.4 –0.2837

Modulus at 17 Hz (ksi) E1 356 563.0

Base
Modulus (ksi) E2 20 40.0
Rayleigh Damping
Coefficient βR BBase 0.003 0.002448

Subgrade
Modulus (ksi) E3 5 13.1
Rayleigh Damping
Coefficient βR BBase 0.003 0.002448

5.4 TRADITIONAL OPTIMIZERS—QUASI-NEWTON METHOD

In Section 5.3.2, the second-order Newton’s method that relies on the second partial-derivative
Hessian matrix rather than the gradient to perform optimization was evaluated. This required
computing and storing the inverse of Hessian matrix, which could be computationally expensive
(𝑂𝑂(𝑛𝑛3) computational complexity) even with the help of mathematical approximation techniques
like SVD. The Quasi-Newton methods are proposed to approximate the Hessian matrix (Chen et
al., 2012) without computing it at every iteration to speed up the computation. The

77

approximation methods include the Broyden–Fletcher–Goldfarb–Shanno (BFGS) (Moritz et al.,
2016), Broyden (Huang et al., 2015), Davidon–Fletcher–Powell (DFP) (Pu & Wu, 1990), and
Symmetric Rank 1 (SR1) (Brust et al., 2016) algorithms. The general idea is to compute the
Hessian matrix only once and update it at every iteration instead of computing it from scratch
every time. In this way, the per-iteration computation cost could be reduced at the price of
potential robustness loss.

5.4.1 Broyden–Fletcher–Goldfarb–Shanno Algorithm

The BFGS algorithm (Moritz et al., 2016) is one of the most popular Quasi-Newton methods. Its
core idea is to gradually approximate the Hessian matrix by a generalized secant method based
on gradients. By using linear algebra tricks, the matrix inversion could be avoided, and the
overall computational complexity could be reduced to 𝑂𝑂(𝑛𝑛2), which is one magnitude lower than
𝑂𝑂(𝑛𝑛3) of the second-order Newton’s method. Specifically, 𝐵𝐵 denotes the BFGS approximation
of the Hessian matrix, 𝑥𝑥 denotes the variables, and 𝑔𝑔 denotes the gradient of target function
𝑓𝑓(𝑥𝑥). During initialization, 𝐵𝐵0 is set to 𝐼𝐼. At iteration 𝑡𝑡, the following relations are obtained:

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝐵𝐵𝑡𝑡−1𝑔𝑔 (102)
𝑠𝑠𝑡𝑡 = 𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡 (103)
𝑦𝑦𝑡𝑡 = 𝑔𝑔𝑡𝑡+1 − 𝑔𝑔𝑡𝑡 (104)
𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 −

𝐵𝐵𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑇𝑇𝐵𝐵𝑡𝑡𝑇𝑇

𝑠𝑠𝑡𝑡𝑇𝑇𝐵𝐵𝑡𝑡𝑠𝑠𝑡𝑡
+ 𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡𝑇𝑇

𝑦𝑦𝑡𝑡𝑇𝑇𝑠𝑠𝑡𝑡
 (105)

By iteratively updating the approximation of the Hessian matrix, the optimization process
approaches the target variables. For the object problem, the target function is not differentiable.
Thus, the gradient 𝑔𝑔 is approximated by finite-difference as discussed in Section 5.3.3.

5.4.2 Numerical Stability

The BFGS algorithm was implemented and evaluated in both the one- and three-layer systems
with scalar-based problem definition. All settings were consistent with previous evaluation in
Section 5.3.5. In the one-layer system, the BFGS was able to quickly converge to an optimal
point of 0.533 percent RMSRE, as shown in Figure 53. Compared with the Newton’s method
results, the RMSRE was higher, yet the optimization took less time, which matched exactly with
previous analysis.

78

Figure 53. Optimization Progress of BFGS on One- and Three-Layer Systems

Note that the optimization on the three-layer system ends prematurely as the BFGS gives illegal
input to the finite element model. For example, as early as iteration 2 on the three-layer system,
the BFGS tries to set the Rayleigh beta damping coefficients of the second and third layers to be
–0.32 and –0.36, respectively. This directly stops the optimization process, as shown in Figure
54. Such behavior is expected as the optimization algorithm has no knowledge of the physical
meaning of the variables. As a result, it will arbitrarily explore the parameter space. Researchers
first tried to work around this by implementing a guard procedure in the middleware (see Section
5.1.4) to fix the input when it is illegal. For example, the Rayleigh beta damping coefficients are
set as a small positive number if they are non-positive. However, experimental evaluation shows
that such patch often confuses the optimizer and thus makes the optimization diverge. To solve
this problem, the framework will return a large punishment RMSRE value (e.g., 300 percent) to
the optimizer if illegal inputs are detected. Evaluation suggests that this patch works very well.
As shown in Figure 53, the BFGS method converges to optimal point of 0.420 percent RMSRE
within 10 iterations and the recovered variables are shown in Table 13.

79

Table 13. Optimization Performance of BFGS in Three-layer System

Layer Variable
Target
Value

Seed
Value

Recovered Value by
Optimizer

AC

Sigmoidal
coefficients

delta –0.134 –1 –0.925
alpha 3.703 4.65 4.682

betaPrime –0.465118 –
0.265118 –0.289

gamma –0.548 –0.65 –0.697
Modulus at 17 Hz
(ksi) E1 469 286 424.7

Base
Modulus (ksi) E2 40 50 39.8
Rayleigh Damping
Coefficient βR BBase 0.002 0.003 0.00150

Subgrade
Modulus (ksi) E3 5 7 4.9
Rayleigh Damping
Coefficient βR BSG 0.002 0.001 0.00198

Figure 54. How Lack of Numerical Stability Stops Optimization from 𝒙𝒙 to 𝒚𝒚∗ (The red X
represents the crash due to illegal input.)

5.4.3 Ablation Study

Next, researchers extended the evaluations of BFGS optimizer to field data, which was more
challenging for the optimization than the previously tested synthetic data. The BFGS
optimization on field data resulted in an RMSRE of 47.97 percent, which was far from the
desired level of error. Thus, an ablation study of various possible improvements of the BFGS
with field data was run to further understand performance impact of different improvements on
the BFGS.

The first optimization that was applied was the step size tuning. By default, the BFGS optimizer
uses a very small (1e–6 or smaller) step size for finite difference computation. For the target
problem, this step size was trivial and did not cause any difference in the deflections. Thus, the
step size was updated to 1 percent of the seed values. The evaluation shows this led to a better
RMSRE of 34.43 percent compared to the previous value of 47.97 percent.

80

Normalization was then implemented for improvement. Normalization is a common action in
optimization that is used to fix the problem that occurs when variables with large values receive
overwhelming attention from the optimizer while the variables with small values are ignored.
Specifically, normalization works by rescaling variables with different scales into the same scale
so that all variables influence the optimizer to the same extent. Figure 55 shows an example of
how normalization reshapes a 2D optimization space and makes it easier to find optimal point.

(a) (b)

Figure 55. How Normalization Impacts Optimization: (a) Optimization Space without
Normalization and (b) Optimization Space with Normalization (Arrows represent optimization

steps.)

In the target problem, the range of the variables were different from the levels of 0.001 to 100.
Thus, normalization was a favorable way to improve the BFGS optimizer performance. In
summary, the implementation of normalization happens in the middle layer of the optimization
framework. The middle layer uses the initial values (seed values) of all variables as the
normalization base, so that each variable will be divided by its initial value before passing to the
optimizer. There are two advantages of this implementation. First, all optimization operations
happen at middle layer where both the FE simulation and the optimizer workflows stay
untouched. This makes the normalization transparent, and no modification is needed on the FE
simulation or the optimizer. Second, by using initial values as normalization bases, the
optimization framework does not need prior knowledge of the variables, which makes it a more
generalized and flexible approach.

The BFGS with normalization was evaluated on field data. The results aligned with the
researchers’ expectation: BFGS with normalization had an improved RMSRE of 34.54 percent
compared with the previous RMSRE of 47.97 percent of the original BFGS, which is also
referred to as vanilla BFGS.

The BFGS with both the tuned step size and the normalization improvements was further
evaluated. The optimization process is shown in Figure 56. The figure shows that the
optimization ran smoothly, and the final RMSRE was 13.20 percent.

81

Figure 56. Optimization Progress of BFGS Optimizer on Field-Measured Data with Tuned Step
Size and Normalization

The impacts of the two improvements are summarized in Table 14. Although the final RMSRE,
even with two improvements, was still above the desired levels, it shows that these two
improvements are useful and could be applied to other optimizers.

Table 14. Optimization Performance of BFGS on Field-Measured Data with Different
Improvements

Name Final RMSRE (%)
Original BFGS 47.97
BFGS with tuned step size 34.43
BFGS with normalization 34.54
BFGS with both tuned step size and normalization 13.20

5.4.4 Limited-Memory BFGS with Bound Constraints

The limited-memory BFGS with bound constraints (L-BFGS-B) algorithm (Byrd et al., 1995) is
an extension of the BFGS algorithm. The main differences are: (1) it avoids the potentially
memory-expensive matrix operation of 𝐵𝐵𝑡𝑡−1𝑔𝑔 (see Equation 102 in Section 5.4.1), and (2) it is
able to handle simple box constraints (bound constraints). To do that, it uses a recursion loop to
compute 𝐵𝐵𝑡𝑡−1𝑔𝑔 and a gradient method to identify the free variables (those inside the constraints)
and fixed variables (those on the boundaries of constraints). Given its promising features, the L-
BFGS-B was applied to solve the object optimization problem.

5.4.5 Evaluation

The L-BFGS-B algorithm was evaluated on the one- and three-layer systems with a scalar-based
problem definition. All settings were consistent with the previous evaluation described in Section
5.3.5.

82

As shown in Figure 57, the L-BFGS-B algorithm performed similarly to the original BFGS. It
converged to an optimal point of 1.273 percent RMSRE on the one-layer system and an optimal
point of 1.361 percent RMSRE on the three-layer system. The details of recovered variables are
shown in Table 15.

Figure 57. Optimization Progress of L-BFGS-B in One- and Three-Layer Systems

Table 15. Optimization Performance of L-BFGS-B in a Three-Layer System

Layer Variable
Target
Value

Seed
Value

Recovered
Value by
Optimizer

AC Sigmoidal coefficients

delta –0.134 –1 –1.008
alpha 3.703 4.65 4.520
betaPrime –0.465118 –0.265118 –0.262
gamma –0.548 –0.65 –0.647

Modulus at 17 Hz (ksi) E1 469 286 222.4

Base
Modulus (ksi) E2 40 50 49.8
Rayleigh Damping
Coefficient βR BBase 0.002 0.003 0.00301

Subgrade
Modulus (ksi) E3 5 7 5,1
Rayleigh Damping
Coefficient βR BSG 0.002 0.001 0.00100

Researchers further evaluated L-BFGS-B performance on the field-measured data. The
optimization progress is shown in Figure 58. Compared with BFGS, which converges with large
RMSRE, the L-BFGS-B ran smoothly and converged at iteration 7 with RMSRE of 1.4689

83

percent. The recovered variables are shown in Table 16. Other classical optimizers that do not
rely on derivatives to function were evaluated next.

Figure 58. Optimization Progress of L-BFGS-B on Field-Measured Data for a Three-Layer
System

Table 16. Optimization Performance of L-BFGS-B on Field-Measured Data for a Three-Layer
System

Layer Variable Seed Value

Recovered
Value by
Optimizer

AC Sigmoidal coefficients

delta –0.9 –0.8284
alpha 4.5 4.787
betaPrime –0.7 –0.8438
gamma –0.4 –0.3495

Modulus at 17 Hz (ksi) E1 356 816.8

Base Modulus (ksi) E2 20 23.2
Rayleigh Damping Coefficient βR BBase 0.003 0.002788

Subgrade Modulus (ksi) E3 5 13.6
Rayleigh Damping Coefficient βR BBase 0.003 0.002788

5.5 POWELL’S CONJUGATE DIRECTION METHOD

Powell’s conjugate direction method (Powell, 1964), commonly referred to as Powell’s method,
is a heuristic algorithm that does not need derivatives to work. It is also capable of working with
constraints, which makes it a promising approach for solving the object optimization problem.

84

5.5.1 Algorithm

The core idea of Powell’s method is that the local extremums could form a line that conjugates to
the direction towards global extremums, which is why it is named conjugate direction method.
Specifically, Powell’s method initializes a set of search direction vectors 𝑆𝑆 to be the unit vectors
on each dimension of search space. At each iteration, 𝑥𝑥 denotes the current point and 𝑓𝑓(𝑥𝑥)
denotes the target function.

𝑥𝑥𝑡𝑡 = 𝑥𝑥 (106)

For each direction 𝑠𝑠 in 𝑆𝑆:

𝛾𝛾 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓(𝑥𝑥𝑡𝑡 + 𝛾𝛾𝛾𝛾)) (107)

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝛾𝛾𝛾𝛾 (108)

then:

𝑠𝑠∗ = 𝑥𝑥 − 𝑥𝑥𝑡𝑡 (109)

𝛾𝛾∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥 + 𝛾𝛾∗𝑠𝑠∗) (110)

𝑥𝑥 = 𝑥𝑥 + 𝛾𝛾∗𝑠𝑠∗ (111)

Update 𝑆𝑆 with 𝑠𝑠∗. From this algorithm, it is clear that Powell’s method does not need the
derivative information.

5.5.2 Evaluation

Powell’s method was evaluated on the one- and three-layer systems with a scalar-based problem
definition. All settings were consistent with the previous evaluation described in Section 5.3.5.
The optimization progress is shown in Figure 59. In the one-layer system, the final RMSRE was
0.0290 percent, and in the three-layer system, the final RMSRE was 0.125 percent. Table 17
shows the recovered variables.

85

Figure 59. Optimization Progress of Powell’s Method in One- and Three-Layer Systems

Table 17. Optimization Performance of Powell’s Method in the Three-Layer System

Layer Variable
Target
Value Seed Value

Recovered
Value by
Optimizer

AC
Sigmoidal
Coefficients

delta –0.134 –1 –1.316
alpha 3.703 4.65 4.451
betaPrime –0.465118 –0.265118 –0.897
gamma –0.548 –0.65 –1.151

Modulus at 17 Hz (ksi) E1 469 286 542.3

Base
Modulus E2 40 50 39.0
Rayleigh Damping
Coefficient βR BBase 0.002 0.003 0.00196

Subgrade
Modulus (ksi) E3 5 7 4.9
Rayleigh Damping
Coefficient βR (ksi) BSG 0.002 0.001 0.00198

It is worth noting that Powell’s method uses a great number of function evaluations in each
iteration as it needs to do a line search along every direction (see Equation 107). This can be
considered a drawback compared to the previous derivative-based approaches. Next, the
Powell’s method optimizer on field-measured deflections of a three-layer system was evaluated
(Figure 60 and Table 18).

From the optimization progress in Figure 60, the Powell’s method optimizer seemed to run
smoothly on field-measured data. The final RMSRE was 1.95 percent. However, the recovered
variables (Table 18) were unreasonable. Notably, the gamma was a positive value, 0.19.

86

According to Equation 76, this means the E (time-temperature-dependent relaxation modulus)
would decrease as frequency increases, which is unrealistic. This is understandable because
optimizers have no background knowledge about what the physical meaning of variables are.
Therefore, they will arbitrarily explore the optimization space and stop at a point with low
RMSRE, which might not be a feasible solution in practice. Thus, constrained optimization was
evaluated as a way to fix this issue.

Figure 60. Optimization Progress of Powell’s Method on Field-Measured Deflections of a Three-
Layer System

Table 18. Optimization Performance of Powell’s Method on Field-Measured Deflections of a
Three-Layer System

Layer Variable
Seed
Value

Recovered
Value by
Optimizer

AC Sigmoidal coefficients

delta –0.9 –0.9958
alpha 4.5 4.515
betaPrime –0.7 –0.9186
gamma –0.4 0.1958

Modulus at 17 Hz (ksi) E1 356 99.6

Base Modulus (ksi) E2 20 41.9
Rayleigh Damping Coefficient βR BBase 0.003 0.003179

Subgrade Modulus (ksi) E3 5 12.6
Rayleigh Damping Coefficient βR BBase 0.003 0.003179

87

5.5.3 Powell’s Method Optimizer with Constraints

Given that the Powell’s method optimizer provided unpractical solutions, researchers proposed
to use constrained optimization to instruct the optimizer to stay in a certain area of the
optimization space to avoid infeasible solutions. For the target problem, researchers constrained
the Powell’s method optimizer to only consider the solutions with gamma smaller than zero. The
optimization progress with constraints is shown in Figure 61. Note that the x-axis of this figure is
the number of function evaluations. The final RMSRE of 8.092 percent was higher than the
RMSRE without constraints. This was expected as the optimizer with constraints cannot freely
explore the optimization space and can only pick solutions from a subset of all possible
solutions, which makes the RMSRE higher.

Figure 61. Optimization Progress of Powell’s Method on Field-Measured Deflection of a Three-
Layer System with Constraints (Note the x-axis is number of function evaluations.)

The recovered variables are summarized in Table 19, which shows the Powell’s method
optimizer followed the constraints well and set the recovered gamma to a negative value.
However, it should also be noted that this gamma value is close to zero, which suggests that
Powell’s method could still prefer a positive gamma but was unable to do so as it was limited by
the constraints. From an optimization perspective, this phenomenon is called local optimal,
where the optimizer mistakenly selects a non-optimal solution as the optimal one.

88

Table 19. Optimization Performance of Powell’s Method in the Field-Measured Three-Layer
System with Constraints

Layer Variable Seed Value

Recovered
Value by
Optimizer

AC Sigmoidal coefficients

delta –0.9 –0.9958
alpha 4.5 4.299
betaPrime –0.7 –0.9141
gamma –0.4 –0.002975

Modulus at 17 Hz (ksi) E1 356 119.1

Base Modulus (ksi) E2 20 91.4
Rayleigh Damping Coefficient βR BBase 0.003 0.005986

Subgrade Modulus (ksi) E3 5 11.6
Rayleigh Damping Coefficient βR BBase 0.003 0.005986

To improve the Powell’s method performance with constraints, different seed (initial) values
were used to get the Powell optimizer out of the local optimal. The first set of seeds evaluated
was a native one with all variables set to zero. This set led the FE model to crash. Then
researchers tried a different set by cutting all seed values to half of the original values. This one
worked well, and the optimization progress is shown in Figure 62. The final RMSRE is 3.956
percent, and the recovered values are shown in Table 20 together with the recovered variables
with original seed values as comparison. It is clear that the seed values play an important role in
the convergence point of optimizers. The impact of seed values was then systematically
evaluated for all optimizers.

Figure 62. Optimization Progress of Powell’s Method on Field-Measured Deflections of a Three-
Layer System with Constraints and a Different Seed Set (Note the x-axis is the number of

function evaluations.)

89

Table 20. Optimization Performance of Powell on Field-Measured Deflections of a Three-Layer
System with Constraints and Two Seed Sets

Layer Variable

Previous
Seed
Value

Previous
Recovered

Value
Seed
Value

Recovered
Value

AC

Sigmoidal
Coefficients

delta –0.9 –0.9958 –0.45 –0.1693
alpha 4.5 4.299 2.25 3.129
betaPrime –0.7 –0.9141 –0.35 –2.207
gamma –0.4 –0.002975 –0.2 –1.00471

Modulus at 17 Hz
(ksi) E1 356 119.1 10.0 729.1

Base
Modulus (ksi) E2 20 91.4 10.0 17.8
Rayleigh Damping
Coefficient βR BBase 0.003 0.005986 0.0015 0.002948

Subgra
de

Modulus (ksi) E3 5 11.6 2.5 15.6
Rayleigh Damping
Coefficient βR BBase 0.003 0.005986 0.0015 0.002948

5.6 NELDER–MEAD METHOD

The Nelder–Mead (Gao & Han, 2012) method, also known as downhill simplex method, is a
commonly used heuristic numerical method for multidimensional optimization. Like Powell’s
method, the Nelder–Mead method is a direct-search algorithm that does not rely on derivatives to
work.

5.6.1 Algorithm

The Nelder–Mead method works by gradually moving and shrinking a simplex (polytope) to an
optimal point on the optimization space. Specifically, a simplex is initialized around the initial
point. For an optimization space of 𝑛𝑛 dimension, the simplex will have 𝑛𝑛 + 1 vertices
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1. For example, a triangle on a plane, a tetrahedron in 3D space, and so forth. Then
the algorithm begins as follows:

• Step 1: Calculate the centroid of current simplex as 𝑥𝑥0.
• Step 2: Calculate next point 𝑥𝑥𝑡𝑡 = 𝑥𝑥0 + 𝛼𝛼(𝑥𝑥0 − 𝑥𝑥𝑛𝑛+1).
• Step 3: If 𝑥𝑥𝑡𝑡 is the best point among all vertices 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1, it means the optimal

point is likely outside current simplex. Thus, the need to expand the simplex. The expand
point 𝑥𝑥𝑒𝑒 = 𝑥𝑥0 + 𝛾𝛾(𝑥𝑥𝑡𝑡 − 𝑥𝑥0).

• Step 4: Contract the simplex by 𝑥𝑥𝑐𝑐 = 𝑥𝑥0 + 𝜌𝜌(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥0).
• Step 5: If none of 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑒𝑒 , 𝑥𝑥𝑐𝑐 is better than original vertices 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1, shrink all

vertices 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1 by 𝑥𝑥𝑖𝑖 = 𝑥𝑥1 + 𝜎𝜎(𝑥𝑥𝑖𝑖 − 𝑥𝑥1) except the best vertex. Or, if some
vertices in 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑒𝑒 , 𝑥𝑥𝑐𝑐 are better than the original vertices 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1, pick 𝑛𝑛 best
vertices from 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑒𝑒 , 𝑥𝑥𝑐𝑐 , 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛+1 as the new simplex.

• Step 6: Go to Step 1.

90

The 𝛼𝛼, 𝛾𝛾,𝜌𝜌,𝜎𝜎 are parameters and by default 𝛼𝛼 = 1, 𝛾𝛾 = 2, 𝜌𝜌 = 1
2

, and 𝜎𝜎 = 1
2
. This algorithm is

different from previous optimizers’ algorithms, where some mathematical information (for
example, derivative/gradients) are computed and used to update the solution. As a heuristic
algorithm, the Nelder–Mead method tries to resemble how a human thinks and behaves when
facing an optimization problem.

5.6.2 Evaluation

The Nelder–Mead method was evaluated with the same synthetic three-layer pavement structure
used for previous methods. The details of the target system are shown in Figure 47. The
optimization progress of Nelder–Mead is shown in Figure 64. The method took almost 300
function evaluations to converge. It should be noted that the final 50 function evaluations had
RMSRE within the 1 percent range. The final RMSRE was 0.5835 percent, and the recovered
variables are shown in Table 21.

Figure 63. Optimization Progress of the Nelder–Mead Method on Deflections of a Synthetic
Three-Layer Pavement Structure

91

Table 21. Optimization Performance of the Nelder–Mead Method in the Three-Layer Pavement
Structure

Layer Variable
Target
Value

Seed
Value

Recovered
Value by
Optimizer

AC Sigmoidal Coefficients

delta –0.134 –1 –0.0070439
alpha 3.703 4.65 5.321895
betaPrime –0.465118 –0.265118 –0.00271253
gamma –0.548 –0.65 –0.0129539

Modulus at 17 Hz (ksi) E1 469 286 477.2

Base
Modulus (ksi) E2 40 50 38.3
Rayleigh Damping
Coefficient βR BBase 0.002 0.003 0.0030104

Subgrade
Modulus (ksi) E3 5 7 5.0
Rayleigh Damping
Coefficient βR BSG 0.002 0.001 0.00216480

Next, the Nelder–Mead method was evaluated with the field-measured deflection data of a three-
layer pavement structure. The optimization progress is shown in Figure 64. The Nelder–Mead
method converged at an RMSRE of 2.346 percent. Note that although Nelder–Mead used more
iterations, its heuristic algorithm took fewer function evaluations at each iteration. Thus, the
number of function evaluations as a metric was used when comparing the various evaluated
optimizers.

Figure 64. Optimization Progress of the Nelder–Mead Method on Field-Measured Deflections of
a Three-Layer Pavement Structure

The recovered variables are shown in Table 22. The Nelder–Mead method has a similar problem
to the Powell optimizer wherein the gamma value in the solution is positive, thus the solution is

92

not practical. However, unlike Powell’s method, the Nelder–Mead method does not support
constrained optimizations, so it is impossible to limit it to only search solutions with negative
gamma values. Different seed values were explored similar to what was discussed in Section
5.5.3 to see if they led to negative gamma values. The first seed values diverged with RMSRE of
over 300 percent and the second one converged with gamma of 0.1. Thus, the Nelder–Mead
might not be a suitable solution for the target problem.

Table 22. Optimization Performance of the Nelder–Mead Method on Field-Measured
Deflections of a Three-Layer Pavement Structure

Layer Variable
Seed
Value

Recovered
Value by
Optimizer

AC Sigmoidal Coefficients

delta –0.9 –0.4969
alpha 4.5 5.184
betaPrime –0.7 –0.6342
gamma –0.4 0.03316

Modulus at 17 Hz (ksi) E1 356 695.5

Base Modulus (ksi) E2 20 17.8
Rayleigh Damping Coefficient βR BBase 0.003 0.003916

Subgrade Modulus (ksi) E3 5 13.2
Rayleigh Damping Coefficient βR BBase 0.003 0.003916

5.7 BAYESIAN OPTIMIZATION METHOD

As traditional optimization methods have been extensively evaluated ranging from Newton-
based methods to heuristic optimizers, the next step was to evaluate learning-based optimizers.
The most fundamental difference between traditional and learning-based optimizers is that
learning-based optimizers usually use information from all iterations, whereas traditional
optimizers only examine what happens at current or recent iterations. For example, when making
decisions at iteration 100, most learning-based optimizers would consider results from all
previous 99 iterations, whereas the traditional optimizers like Newton’s method would only
consider the gradients of current iteration. In other words, for Newton’s methods, as long as the
current variables’ values and gradients do not change, the output would be the same regardless of
the previous results. For learning-based optimizers, even if current variables’ values and
gradients do not change, the output would be dependent on previous results. As a result, the
learning-based optimizers are usually more robust but have more parameters, which are more
challenging to implement and tune.

The Bayesian optimization, a well-known learning-based algorithm, is based on a simple
intuition: for target function 𝑓𝑓(𝑥𝑥) = 𝑦𝑦, suppose it is known that 𝑓𝑓(5) = 2, then for the 𝑥𝑥 near 5,
its function value should be more likely near 2. This could be formulated from the probability
perspective. For the unknown target function, it could be represented by a probability model
where the known points (like the 𝑓𝑓(5) = 2 in the example) has 100 percent probability of
yielding its corresponding results and the distanced points have little probability of yielding that
result. In this way, the more known points there are, the more accurate the probability model will

93

be. Finally, when the probability model is accurate enough, the optimal points can be naturally
inferred from the probability model. This is called surrogate optimization, in which a surrogate
model is first fitted to the target function and then the optimization takes place on this surrogate
model.

Bayesian optimization is widely used in practice. For example, AlphaGo, Google’s ® chess-
playing artificial intelligence (AI) that has beaten top-rated human players, uses the Bayesian
optimization. In this section, researchers presented data from their previous work, as shown in
Figure 65 (Chen et al., 2018), to more intuitively show how Bayesian optimization works.

In Figure 65, the target function 𝑓𝑓(𝜃𝜃) to be optimized is the red-dotted line, and it is unknown to
the optimizer. The blue line is the surrogate model. The red circles on the red-dotted line are the
previous known points, and the white circle is the current tested point. The light blue region is
the probability distribution the optimizer concluded from the known points. As the figure shows,
at first the Bayesian optimizer has little knowledge about the target function, so both the
probability distribution and surrogate model are way off the target function. Along the training,
the optimizer has more known points and converges the probability distribution to the true
distribution as previously discussed. When the surrogate model is fitted to the target function at
𝑡𝑡 = 5, the optimal point is also achieved.

Figure 65. Bayesian Optimization Working on Example Function

5.7.1 Algorithm

On the algorithm level, Bayesian optimization is more challenging than it appears. The first
challenge researchers need to address is the balance between exploitation and exploration, which
is a long-time problem in the field of learning-based optimizers. Basically, the problem can be
described in the following two questions:

• Suppose tests are done about the target function and a point with relatively good results is
found, should the point be fine-tuned hoping for better results (i.e., exploitation)?

• Should the rest of the unknown space be explored to find another point with better results
(i.e., exploration)?

94

For Bayesian optimization, three different strategies are used to handle the exploitation versus
exploration tradeoff: Upper Confidence Bound (UCB), Expected Improvement (EI), and
Probability of Improvement (POI). The UCB is a straightforward strategy that picks the
maximal/minimal points from the probability distribution, which can be roughly understood as
the edge of the light-blue-shaded region shown in Figure 65. The EI picks the next point with the
highest expected improvement. The POI aims to pick the next point that has the highest
probability of being better than best known point.

The next question to consider is what surrogate model should be used to approximate the target
function? The most commonly used one is the Gaussian process. It is based on the multivariate
Gaussian distribution (or sometimes known as joint normal distribution), which is a high-
dimension extension of normal/gaussian distribution. For a scalar variable 𝑋𝑋, a normal
distribution is defined as 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2), where 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation. For a
more complicated high-dimensional case where 𝑋𝑋 is a vector, components of 𝑋𝑋 could have
potential impact on each other, so their covariance must be formulated. Specifically, a
multivariate Gaussian distribution of vector 𝑋𝑋 can be defined as 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝛴𝛴), where mean vector
𝜇𝜇 = 𝐸𝐸(𝑋𝑋) and elements in covariance matrix 𝛴𝛴𝑖𝑖,𝑗𝑗 = 𝐸𝐸�(𝑋𝑋𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑋𝑋𝑗𝑗 − 𝜇𝜇𝑗𝑗��. For Bayesian
optimization, the target is to predict the distribution of the next point 𝑥𝑥∗ with the knowledge of
all previous known points 𝑥𝑥1 … 𝑥𝑥𝑡𝑡 and their results 𝑓𝑓1 … 𝑓𝑓𝑡𝑡. For conciseness, in the following
discussions, known points will be referred to as 𝑥𝑥 and their corresponding results as 𝑓𝑓. To predict
next point 𝑥𝑥∗, the joint distribution of 𝑥𝑥 and 𝑥𝑥∗ is written as:

� 𝐟𝐟𝐟𝐟∗
�~𝑁𝑁 ��

𝝁𝝁
𝝁𝝁∗� , �

Σ Σ∗
Σ∗T Σ∗∗

�� (112)

Using the formula for conditioning a joint Gaussian distribution gives:

f∗ ∣ f ~ 𝑁𝑁(𝜇𝜇∗ + 𝛴𝛴∗T𝛴𝛴−1(f − 𝜇𝜇),𝛴𝛴∗∗ − 𝛴𝛴∗T𝛴𝛴−1𝛴𝛴∗) (113)

Note that in the above equation, 𝑓𝑓, 𝜇𝜇,∑ are already known and 𝜇𝜇∗ can be assumed to be same as
𝜇𝜇 since the target problem is the same. Thus, the only unknown items are the covariance terms
∑∗ and ∑∗∗. In other words, if there was a way to fit/model the covariance, the problem would be
solved. Recall the basic intuition discussed earlier: closer inputs should yield similar outputs, and
distanced inputs are likely to give different outputs. That means the covariance could be solely
modelled based on inputs. The numerical models used to approximate the covariance are called
kernel functions 𝑘𝑘. In practice, there are many limitations on the choice of kernel functions, but
they are beyond the scope of this report. The most commonly used kernel function is the radial-
basis function kernel (also known as squared-exponential kernel/Gaussian kernel):

𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp �−𝑑𝑑�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�
2

2𝑙𝑙2
� (114)

where the 𝑑𝑑 is the Euclidean distance and 𝑙𝑙 is a parameter.

95

However, this kernel function is often too simple to fit the real covariance in practice. Thus, one
of its generalization forms called Matérn kernel is often used instead:

𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 1
Γ(𝑣𝑣)2𝑣𝑣−1

 �√2𝑣𝑣
𝑙𝑙
𝑑𝑑�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗��

𝑣𝑣

 𝐾𝐾𝑣𝑣 �
√2𝑣𝑣
𝑙𝑙
𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�� (115)

where Γ is the gamma function, 𝐾𝐾𝑣𝑣 is the modified Bessel function of the second kind, and 𝑙𝑙 and
ν are positive parameters. Note that when 𝑣𝑣 goes to infinite, the Matérn kernel degenerates to the
radial-basis function kernel. In the actual implementation, all parameters of kernel functions such
as 𝑙𝑙 and 𝑣𝑣 are automatically inferred from the known points.

5.7.2 Evaluation

The Bayesian optimizer is implemented and evaluated on the measured deflection of actual
three-layer pavement structure. Different from all previous traditional optimizers, the Bayesian
optimizer cannot work with seed values. Rather, it needs a range (upper/lower bounds) of every
single variable. Researchers constructed a native range from the seed values, as shown in
Table 23. Note that the seed values in Table 23 are for informational purposes only and are not
given to the optimizer.

Table 23. Initial Range and Optimization Performance of Bayesian Optimizer on Field-Measured
Deflections of a Three-Layer Pavement Structure

Layer Variable

Seed
Value
(Not

Used)
Lower
Bound

Upper
Bound

Recovered
Value by
Optimizer

AC

Sigmoidal
coefficients

delta –0.9 –1.8 0 –1.4617
alpha 4.5 0 9 5.4675
betaPrime –0.7 –1.4 0 –1.2872
gamma –0.4 –0.8 0 -0.053885

Modulus at 17 Hz
(ksi) E1 356 0.016 31622 764.4

Base
Modulus (ksi) E2 20 1 40 33.6
Rayleigh Damping
Coefficient βR BBase 0.003 0 0.006 0.0043194

Subgrade
Modulus (ksi) E3 5 1 10 9.9
Rayleigh Damping
Coefficient βR BBase 0.003 0 0.006 0.0043194

The detailed optimization progress is shown in Figure 66. The Bayesian optimizer took around
450 function evaluations to optimize the RMSRE to 6.74 percent. This was not a good
convergence compared with previous optimizers. However, it should be noted that all previous
optimizers used seed values while the Bayesian did not. This means the Bayesian could have an
advantage if seed values are not well-tuned or not given. Researchers plan to further evaluate this
scenario.

96

Figure 66. Optimization Progress of Bayesian Optimizer on Field-Measured Deflections of a
Three-Layer Pavement Structure

The Bayesian optimizer was further evaluated on the synthetic three-layer pavement system.
Similar to the setting of previous evaluation, the seed values were not used by the Bayesian
optimizer, and these seeds were converted to the range instead as shown in Table 24. The
optimization progress is shown in Figure 67, where the Bayesian converged to an RMSRE of
5 percent within around 60 evaluations and stayed at a similar level until the end. The final
RMSRE was 3.85 percent. These results suggest that the Bayesian optimizer can quickly
optimize the variables to a reasonably good level but fail to find the exact values for variables,
which is a similar pattern to what was observed in the field-measured system evaluation.

97

Table 24. Initial Range and Optimization Performance of Bayesian Optimizer on a Synthetic
Three-Layer Pavement Structure

Layer Variable
Target
Value

Seed
Value
(Not

Used)
Lower
Bound

Upper
Bound

Recovered
Value by
Optimizer

AC

Sigmoidal
coefficients

delta –0.134 –1 –2 0 –1.99115
alpha 3.703 4.65 0 9.3 4.96230

betaPrime –
0.465118

–
0.265118

–
0.530236 0 –0.475363

gamma –0.548 –0.65 –1.3 0 –0.238817
Modulus at
17 Hz (ksi) E1 469 286 0.01 44668 25.0

Base

Modulus
(ksi) E2 40 50 0.001 100 66.8

Rayleigh
Damping
Coefficient
βR

BBase 0.002 0.003 0 0.006 0.00340631

Subgrade

Modulus
(ksi) E3 5 7 0.001 14 5.7

Rayleigh
Damping
Coefficient
βR

BSG 0.002 0.001 0 0.002 0.00180675

Figure 67. Optimization Progress of Bayesian Optimizer on a Synthetic Three-Layer Pavement
Structure

98

5.7.3 Parametric Study

As discussed in Section 5.7.1, the choice of exploitation versus exploration strategies and its
trade-offs could have a potential impact on the performance of the Bayesian optimizer. Thus, a
parametric study was overperformed using different strategies and kappa values. Kappa values
control how much the Bayesian optimizer would prefer exploration over exploitation.

The strategies tested were UCB, EI, and POI, and the kappa values tested were 1.0, 2.5, 5.0, and
10. The optimization progresses are shown in Figure 68, and the final results are shown in Table
25. The results indicate that while different strategies and kappa values do make the optimization
different, they do not significantly change the final RMSRE.

Figure 68. Optimization Progress of Parametric Study of the Bayesian Optimizer on Field-
Measured Deflections of a Three-Layer Pavement Structure

Table 25. Parametric Study of the Bayesian Optimizer’s Final RMSRE on Field-Measured
Deflections of a Three-Layer Pavement Structure

Kappa UCB EI POI
2.5 8.094% 8.094% 8.094%
1.0 8.094%
5.0 8.094%
10 8.501%

Notably, these results are different from those in Section 5.7.2, which could be due to different
random seed values. Most learning-based algorithms would give different results across different
runs due to randomness, even if the target problem, the data, and the parameters were the same.

99

5.8 LEVENBERG–MARQUARDT ALGORITHM

In this effort, another family of optimization algorithms, the least-squares algorithms, was also
evaluated. The term least-squares refers to the approach of minimizing the difference between
the observed values and the predicted values by each individual equation of the target problem.
This kind of approach naturally aligns with the vector problem definition (as discussed in Section
5.2.1), allowing for a potentially faster convergence.

The Levenberg-Marquardt (Moré, 1978) algorithm is a popular least-squares algorithm. It can be
described as a combination of Newton’s method and the gradient descent method. It is proposed
to deal with Newton’s method’s drawbacks: the sensitivity to initial point (seed) and the
requirement that Jacobian matrix must be invertible. Specifically, the Levenberg-Marquardt
algorithm uses an adaptive parameter to control the interpolation between Newton’s method and
the gradient descent method. It acts more like a gradient descent method when the parameters are
far from their optimal values and acts more like the Gauss-Newton method when the parameters
are close to their optimal values.

5.8.1 Algorithm

The objective is to find a 𝑝𝑝, where 𝑓𝑓(𝑝𝑝) = 𝑥𝑥 and 𝑥𝑥 is the target value. Similar to Section 5.3.1,
the Levenberg-Marquardt algorithm first uses the Taylor expansion:

𝑓𝑓�p + 𝛿𝛿p� ≈ 𝑓𝑓(p) + J𝛿𝛿p (116)

Here the 𝐽𝐽 is the Jacobian matrix. Then:

�𝐱𝐱 − 𝑓𝑓(𝐩𝐩 + 𝛿𝛿𝐩𝐩,𝑘𝑘)� ≈ �𝐱𝐱 − 𝑓𝑓(𝐩𝐩) − 𝐉𝐉𝛿𝛿𝐩𝐩,𝐤𝐤� = �𝜖𝜖𝑘𝑘 − 𝐉𝐉𝛿𝛿𝐩𝐩,𝐤𝐤� (117)

The objective is to make 𝑓𝑓(𝑝𝑝) as close to 𝑥𝑥 as possible. Thus, minimizing the above equation
gives:

(𝐉𝐉𝑇𝑇𝐉𝐉)𝛿𝛿p = 𝐉𝐉𝑇𝑇𝜖𝜖𝑘𝑘 (118)

Levenberg’s contribution is to replace the above equation by a “damped version”:

[𝜇𝜇𝐈𝐈 + (𝐉𝐉𝑇𝑇𝐉𝐉)]𝛿𝛿p = 𝐉𝐉𝑇𝑇𝜖𝜖𝑘𝑘 (119)

The two terms on the left side of equation 119 give the solution of gradient descent (William,
1992) and Newton’s methods (Björck, 1996), respectively. Thus, the parameter 𝜇𝜇 controls
whether the solution is closer to gradient descent or Newton. For adaptive control, 𝜇𝜇 is adjusted
at each iteration based on the reduction of distance between 𝑓𝑓(𝑝𝑝) and 𝑥𝑥. If the reduction is large,
𝜇𝜇 is decreased, which makes the solution closer to Newton’s method and vice versa. In this way,
the Levenberg-Marquardt algorithm takes advantage of the robustness of gradient descent when
the current value is away from the optimal value and uses the fast and good convergence of the
Newton’s method as the value approaches the optimal.

100

5.8.2 Evaluation

Researchers evaluated the Levenberg-Marquardt algorithm with both the three-layer synthetic
and field-measured FWD data, respectively. The Jacobian matrix is approximated by finite
difference, as described in Section 5.3.3.

As shown in Figure 69, the Levenberg-Marquardt algorithm achieves a fast convergence on the
three-layer synthetic structure. It uses less than 50 function evaluations to reach RMSRE of
1 percent and 85 evaluations to reach 0.1 percent RSMRE. The final RMSRE is 0.085 percent
and the corresponding variables are shown in Table 26. Notably, the sigmoidal coefficients
recovered by the Levenberg-Marquardt algorithm are more similar to the target values than
previous optimization methods.

Figure 69. Optimization Progress of Levenberg-Marquardt on Deflections of Synthetic Three-
Layer Pavement Structure

Table 26. Optimization Performance of Levenberg-Marquardt in the Synthetic Three-Layer
Pavement Structure

Layer Variable
Target
Value

Seed
Value

Recovered
Value by
Optimizer

AC

Sigmoidal coefficients Delta –0.134 –1 -0.185169
Sigmoidal coefficients Alpha 3.703 4.65 3.70327

Sigmoidal coefficients betaPrime –0.465118 –
0.265118 –0.622483

Sigmoidal coefficients
gamma Gamma –0.548 –0.65 –0.490351

Modulus at 17 Hz (ksi) E1 469 286 475.8

101

Layer Variable
Target
Value

Seed
Value

Recovered
Value by
Optimizer

Base
Modulus (ksi) E2 40 50 39.7
Rayleigh Damping
Coefficient βR BBase 0.002 0.003 0.00213204

Subgrade
Modulus (ksi) E3 5 7 5.0
Rayleigh Damping
Coefficient βR BSG 0.002 0.001 0.00202223

For the field-measured FWD data, the Levenberg-Marquardt algorithm still achieved a relatively
fast convergence by using less than 30 function evaluations to reduce the RMSRE to less than 1
percent. The optimization progress is shown in Figure 70 with a final RMSRE of 0.67 percent.
The comparison between Levenberg-Marquardt and other optimizers is discussed in Section
5.14.

Figure 70. Optimization Progress of Levenberg-Marquardt on Deflections of Field-Measured
Three-Layer Pavement Structure

102

Table 27. Optimization Performance of Levenberg-Marquardt on Field-Measured Deflections of
a Three-Layer Pavement Structure

Layer Variable Seed Value

Recovered
Value by
Optimizer

AC

Sigmoidal coefficients Delta –0.9 –0.985555
Sigmoidal coefficients Alpha 4.5 4.40188
Sigmoidal coefficients betaPrime –0.7 –0.942652
Sigmoidal coefficients Gamma –0.4 –0.644878
Modulus at 17 Hz (ksi) E1 356 571.3

Base
Modulus (ksi) E2 20 41.9
Rayleigh Damping
Coefficient βR BBase 0.003 0.00228940

Subgrade
Modulus (ksi) E3 5 13.1
Rayleigh Damping
Coefficient βR BBase 0.003 0.00228940

Levenberg-Marquardt uses both Newton’s and gradient descent methods, so, theoretically, it
takes twice as many function evaluations. Yet the results show that the number of evaluations is
comparable to the original Newton’s method. This is because the caching mechanism
implemented in the middle layer of the optimization framework (described in Section 5.1) helped
to avoid all the repeated function evaluations during optimization. With the help of this
mechanism, the Levenberg-Marquardt algorithm has shown promising results in terms of both
the speed of convergence and the good final RMSRE.

5.9 TRUST REGION ALGORITHM

Inspired by the promising results of the Levenberg-Marquardt algorithm, researchers followed up
with other least-squares algorithms. The trust region algorithm is another popular least-squares
algorithm. Its concept is as follows: there are multiple ways to approximate the target function
𝑓𝑓() at a given point 𝑥𝑥 (e.g., Taylor expansion). These approximations are most accurate around
the point 𝑥𝑥 but not elsewhere. Thus, there is a trust region Δ around 𝑥𝑥, where one can safely trust
the approximation and perform optimization on it. The trust region is like a dynamic boundary
on the optimization. With such a boundary, the optimization is more stable and can avoid
numerical problems like those observed in Section 5.4.2.

5.9.1 Algorithm

Let the target function be 𝐹𝐹 and the approximated function be 𝑓𝑓.

𝑔𝑔 = 𝐹𝐹′(𝑥𝑥), 𝐻𝐻 = 𝐹𝐹′′(𝑥𝑥) (120)

By the Taylor expansion, 𝐹𝐹 can be approximated as:

𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥𝑇𝑇𝐻𝐻𝐻𝐻 + 𝑥𝑥𝑇𝑇𝑔𝑔 (121)

103

Optimizing the approximated function gives:

𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓(𝑥𝑥),𝑥𝑥 < Δ) (122)

where Δ is the trust region. If 𝐹𝐹(𝑥𝑥 + 𝑠𝑠) < 𝐹𝐹(𝑥𝑥), it means the current trust region is valid: 𝑥𝑥 =
𝑥𝑥 + 𝑠𝑠, increase Δ; or, it means the current trust region is too large, then decrease Δ. On the
implementation level, there are some improvements. For example, instead of using a scaler as Δ,
one could use the shape of the constraints as the shape of trust region. This is called the trust
region reflective algorithm. It allows the users to have finer control over the trust region.

5.9.2 Evaluation

The trust region algorithm was evaluated on both the synthetic and field-measured, three-layer
FWD data. On the synthetic pavement structure, the trust region algorithm used about 45
function evaluations to reach RMSRE of 1 percent and 120 evaluations to reach RMSRE below
0.1 percent, as shown in Figure 71. The recovered variables are shown in Table 28 and the final
RMSRE is 0.098 percent. The comparison of trust region and other optimizers is in Section 5.14.

Figure 71. Optimization Progress of Trust Region on Deflections of Synthetic Three-Layer
Pavement Structure

104

Table 28. Optimization Performance of Trust Region in the Synthetic Three-Layer
Pavement Structure

Layer Variable
Target
Value

Seed
Value

Recovered
Value by
Optimizer

AC

Sigmoidal coefficients Delta −0.134 −1 0.953666
Sigmoidal coefficients Alpha 3.703 4.65 2.72996
Sigmoidal coefficients betaPrime −0.465118 −0.265118 0.0806200
Sigmoidal coefficients Gamma −0.548 −0.65 −0.503267
Modulus at 17 Hz (ksi) E1 469 286 476.0

Base
Modulus (ksi) E2 40 50 39.7
Rayleigh Damping
Coefficient βR BBase 0.002 0.003 0.00214440

Subgrade
Modulus (ksi) E3 5 7 5.0
Rayleigh Damping
Coefficient βR BSG 0.002 0.001 0.00200754

The convergence pattern was similar for the field-measured FWD data. The trust region
algorithm used about 35 evaluations to reach RMSRE of 1 percent. The final RMSRE was
0.6938 percent, which was among the top-performing optimizers evaluated. The details are
presented in Figure 72 and Table 29.

Figure 72. Optimization Progress of Trust Region on Deflections of Field-Measured Three-Layer
Pavement Structure

105

Table 29. Optimization Performance of Trust Region on Field Measured Deflections of a Three-
Layer Pavement Structure

Layer Variable Seed Value
Recovered Value

by Optimizer

AC

Sigmoidal coefficients Delta –0.9 –0.422799
Sigmoidal coefficients Alpha 4.5 5.41625
Sigmoidal coefficients betaPrime –0.7 –0.0632498
Sigmoidal coefficients Gamma –0.4 –0.227358
Modulus at 17 Hz (ksi) E1 356 556.2

Base
Modulus (ksi) E2 20 40
Rayleigh Damping
Coefficient βR BBase 0.003 0.00237904

Subgrade
Modulus E3 5 13
Rayleigh Damping
Coefficient βR BBase 0.003 0.00237904

5.10 DOGLEG ALGORITHM

The Levenberg–Marquardt algorithm can be considered an enhancement to Newton’s method by
including the gradient descent algorithm to improve its robustness and convergence speed. The
trust region algorithm can be considered an enhancement to Newton’s method by making its step
size adaptive. A natural question is whether it is possible to combine the two improvements. This
combination is referred to as Powell’s dogleg method. It combines the Newton’s method and the
gradient descent as the Levenberg–Marquardt algorithm and then limits the solution by the trust
region.

5.10.1 Algorithm

The dogleg algorithm is a heuristic algorithm, as shown in Figure 73. If the current point is 𝑥𝑥, the
algorithm needs to decide the next point 𝑥𝑥𝑡𝑡+1:

• Step 1—Get next point 𝑥𝑥𝑔𝑔𝑔𝑔 from Gauss-Newton method.
• Step 2—If 𝑥𝑥𝑔𝑔𝑔𝑔 is within trust region Δ: 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑔𝑔𝑔𝑔.
• Step 3—If 𝑥𝑥𝑔𝑔𝑔𝑔 is outside trust region Δ: get next point 𝑥𝑥𝑠𝑠𝑠𝑠 from gradient descent method.
• Step 4—If 𝑥𝑥𝑠𝑠𝑠𝑠 is outside trust region Δ: cap 𝑥𝑥𝑠𝑠𝑠𝑠 to the boundary of Δ; 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
• Step 5—If 𝑥𝑥𝑠𝑠𝑠𝑠 is within trust region Δ: 𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑔𝑔𝑔𝑔 + 𝑥𝑥𝑠𝑠𝑠𝑠. Cap 𝑥𝑥𝑘𝑘 to the boundary of Δ:

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑘𝑘_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

In this way, the shape of the actual optimization step is like a dogleg hole in golf; hence, the
algorithm’s name.

106

Figure 73. How Dogleg Algorithm Works (Lourakis & Argyros, 2005)

5.10.2 Evaluation

Similar to previous evaluations, the dogleg algorithm was evaluated with the synthetic and field-
measured, three-layer system FWD data. On the synthetic data, the dogleg algorithm shows a
fast convergence of less than 75 function evaluations to reach the RMSRE of 0.1 percent, as
shown in Figure 74. The final RMSRE is 0.055 percent, which was the best result among all
optimizers evaluated so far. The comparison of the dogleg and other optimizers is discussed in
Section 5.14. The recovered variables are shown in Table 30.

Figure 74. Optimization Progress of the Dogleg Algorithm on Deflections of Synthetic Three-
Layer Pavement Structure

107

Table 30. Optimization Performance of the Dogleg in the Synthetic Three-Layer Pavement
Structure

Layer Variable
Target
Value

Seed
Value

Recovered
Value by
Optimizer

AC

Sigmoidal coefficients Delta –0.134 –1 0.242861
Sigmoidal coefficients Alpha 3.703 4.65 3.3323

Sigmoidal coefficients betaPrime –
0.465118 –0.265118 –0.211929

Sigmoidal coefficients Gamma –0.548 –0.65 –0.614591
Modulus at 17 Hz (ksi) E1 – – 454.9

Base
Modulus (ksi) E2 40 50 40.3
Rayleigh Damping
Coefficient βR BBase 0.002 0.003 0.00190876

Subgrade
Modulus E3 5 7 4,9
Rayleigh Damping
Coefficient βR BSG 0.002 0.001 0.00198551

For the field-measured data, the dogleg algorithm took about 30 function evaluations to achieve
RMSRE of 1 percent, and the final RMSRE was 0.6763 percent. The optimization progress is
shown in Figure 75, and the recovered results are shown in Table 31.

Figure 75. Optimization Progress of the Dogleg Algorithm on Deflections of Field-Measured
Three-Layer Pavement Structure

108

Table 31. Optimization Performance of the Dogleg Algorithm on Field-Measured Deflections of
a Three-Layer Pavement Structure

Layer Variable Seed Value

Recovered
Value by
Optimizer

AC

Sigmoidal coefficients delta –0.9 –0.369329
Sigmoidal coefficients alpha 4.5 5.54109
Sigmoidal coefficients betaPrime –0.7 0.0133356
Sigmoidal coefficients gamma –0.4 –0.214682
Modulus at 17 Hz (ksi) E1 356 558.2

Base
Modulus (ksi) E2 20 40
Rayleigh Damping
Coefficient βR BBase 0.003 0.00234077

Subgrade
Modulus E3 5 13
Rayleigh Damping
Coefficient βR BBase 0.003 0.00234077

Similar to the Levenberg–Marquardt algorithm, the theoretical number of function evaluations
needed was higher than the ones shown in Table 31. The caching mechanism reduced the
number of function evaluations.

5.11 KALMAN FILTER

The Kalman filter is a widely used algorithm that estimates system states under noisy
measurements and external disturbance. The key idea is to fit a joint probability distribution over
the variables for each timeframe. This algorithm is widely used in industrial controllers such as
guidance, navigation, and control of vehicles and aircraft. Several related works (Choi et al.,
2010; Wu et al., 2021) proposed the use of the Kalman filter to estimate the layer modulus in
backcalculation of AC structures. The challenge is that the target of this project is to estimate a
wide range of variables including sigmoidal coefficients and Rayleigh damping coefficients
instead of just the layer modulus. Thus, an enhanced implementation of the Kalman Filter was
employed in this project to deal with the multidimensional parameters space-of-target problem.

5.11.1 Problem Definition

The Kalman filter estimates the system state at the current time step based on three factors: the
previous system state, the current measurements (also called control signals), and noise:

(123)

where F is the state transition matrix, B is the control-input matrix, and u is the measurements, w
is the noise assumed to be from a multidimensional zero-mean Gaussian distribution with
covariance Q. The Kalman filter also assumes that current measurements are related to current
system state by:

xk = Fxk-1 + Buk-1 + wk-1

109

𝑧𝑧𝑘𝑘 = 𝐻𝐻𝒙𝒙𝑘𝑘 + 𝒗𝒗𝑘𝑘 (124)

where H is the measurement matrix, and v is the measurement noise that is also assumed to be
from a multidimensional zero-mean Gaussian distribution with covariance R. Under this problem
setting, any system in the Kalman filter could by defined by the five matrices F, B, H, Q, and R.

5.11.2 Algorithm

The Kalman filter can be seen as a two-stage algorithm. It first predicts the system state x and
error covariance P based on information from the previous step:

𝑥𝑥�𝑘𝑘− = 𝐹𝐹𝑥𝑥�𝑘𝑘−1+ + 𝐵𝐵𝐵𝐵𝑘𝑘−1 (125)

𝑃𝑃𝑘𝑘− = 𝐹𝐹𝐹𝐹𝑘𝑘−1+ 𝐹𝐹𝑇𝑇 + 𝑄𝑄 (126)

The subscripts – and + indicate “predicted” and “refined” variables, respectively. The Kalman
filter algorithm refines these predicted values based on the collected measurement information.

𝒚𝒚�𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑥𝑥�𝑘𝑘− (127)

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇(𝑅𝑅 + 𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇)−1 (128)

𝒙𝒙�𝑘𝑘+ = 𝒙𝒙�𝑘𝑘− + 𝐾𝐾𝑘𝑘𝒚𝒚� (129)

𝑃𝑃𝑘𝑘+ = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘− (130)

where y is the difference between predicted and actual measurements, called measurement
residual. K is Kalman gain, which serves as a weight the algorithm uses to balance between the
measurements and system state estimations. Figure 76 shows a high-level workflow of the
described Kalman filter algorithm.

110

Figure 76. The Kalman Filter Workflow Showing how the Algorithm Estimates Current System
States

The Kalman filter algorithm can be more intuitively understood by comparing it to a Newton’s
method algorithm with a finite difference and a fixed step size of 1. In that scenario, the
measurement residual is similar to the derivative, and the system-state estimation update can be
considered a damped version of the Newton’s method updated equation.

5.11.3 Problem Formulation

The Kalman filter algorithm could not be directly applied to the target problem as it holds several
assumptions that are not applicable to the backcalculation problem. Thus, the Kalman filter was
tailored to fit the target problem.

The first challenge was to formulate the backcalculation problem into a form that the Kalman
filter could work on. The Kalman filter expects a system with varying states and external
disturbances, yet the target backcalculation problem is static. Thus, variables were used as the
system state, and the parameters were used as the measurement, as suggested by the related
work. This seemed reasonable because the Kalman filter takes the current shape of deflections
(i.e., the parameters) as the observation and then uses it to update its estimation to the
backcalculated variables. However, this approach did not work in practice, and all optimization
processes were either diverged or stuck at the starting point even after non-trivial
engineering/tuning effort. Based on related work research, researchers realized that the Kalman
filter expects the current measurement to be correlated with target system states rather than
current estimated states. For a specific backcalculation problem, the target variables are always
fixed. That means the Kalman filter expects the same measurement throughout the optimization
process. Yet that leads to a critical problem: if the only inputs to Kalman filter are the same
measurement and a static Gaussian noise, then it will not be able to do any optimization since it
is not getting any feedback of its estimations.

111

5.11.4 Extended Kalman Filter

Given the analysis discussed in Section 5.11.3, researchers confirmed the reason the optimization
failed. Yet the expectation of correlation between observation and target is a fundamental part of
the Kalman filter. To have the Kalman filter work with the backcalculation problem, researchers
chose to use the Extended Kalman Filter (EKF) as a workaround. The key difference between the
EKF and the Kalman Filter is that the Kalman Filter assumes there exists a static (user-defined)
correlation H between current measurement and target system states (see 5.11.2), whereas the
EKF approximates this measurement matrix H by using Jacobian matrix. Thus, the EKF can
work with the backcalculation problem even if the measurements are static. Specifically,
researchers set the state transition matrix F to identity matrix to reflect the static nature of the
backcalculation problem. Choi,Wu, Pestana, and Harvey (2010) suggests some values for the
uncertainty matrices Q and R, but researchers evaluated those values and found that they did not
work well in practice. Thus, these matrices are set to identity matrices since the backcalculation
problem is deterministic and, thus, there is no uncertainty. In each step, the parameters of the
target variables/measured deflections will be fed as the measurement z. In the meantime, the
Hessian matrix of the current estimation is computed and used as the measurement matrix H.

5.11.5 Evaluation

With the EKF algorithm applied and using the Hessian matrix as measurement matrix H, the
performance of the optimizer was evaluated on the synthetic three-layer pavement structure used
in previous evaluations. The optimization process is shown in Figure 77. The EKF was able to
get a final RMSRE of 0.291 percent with about 100 function evaluations. Although the EKF
showed convergence speeds and final RMSRE comparable to other optimizers, it seemed to be
more sensitive to the seed values. This could be a potential disadvantage of this optimizer.

Figure 77. Optimization Progress of the EKF on Deflections of Synthetic Three-Layer
Pavement Structure

112

Table 32. Optimization Performance of the EKF on Synthetic Deflections of a Three-Layer
Pavement Structure

Layer Variable
Target
Value Seed Value

Recovered
Value by
Optimizer

AC

Sigmoidal Coefficients Delta –0.134 –1 –0.927409
Sigmoidal Coefficients Alpha 3.703 4.65 4.761513
Sigmoidal Coefficients betaPrime –0.465118 –0.265118 –0.277922
Sigmoidal Coefficients Gamma –0.548 –0.65 –0.631047
Modulus at 17 Hz (ksi) E1 469 286 401.6

Base
Modulus (ksi) E2 40 50,000 41.3
Rayleigh Damping
Coefficient βR BBase 0.002 0.003 0.00163970

Subgrade
Modulus E3 5 7 4.9
Rayleigh Damping
Coefficient βR BSG 0.002 0.001 0.00187731

In terms of variables recovery, the EKF performed similarly to other derivative-based optimizers.
It was able to recover the modulus and the Rayleigh damping coefficient reasonably well but
missed the AC sigmoidal coefficients. It should be noted that this project is the first study that
successfully applied the Kalman Filter to such a large group of variables. Previous work in this
line of research only applied Kalman filter to modulus (Choi et al., 2010).

5.12 REINFORCEMENT LEARNING OPTIMIZER

Reinforcement Learning is a powerful tool for general optimization problems that dates back to
the 1990s. In recent years, researchers combined classical reinforcement learning with the neural
network into an even more powerful approach called deep-reinforcement learning, which is the
technique being evaluated for the target problem (Sutton & Barto, 2018; Jaeger & Geiger, 2023).

The core concept of reinforcement learning treats the algorithm itself as an agent that interacts
with the environment with certain actions and learns from the consequences of those actions.
Specifically, reinforcement learning algorithms usually require three types of information:

• “state”—the description of all information about the current environment
• “action”—the available actions the algorithm can take
• “reward”—a quantitative description of the consequences of taking the action in current

state

The workflow is straightforward: for the current state, take the action that maximizes expected
rewards.

The advantages of reinforcement learning include its ability to tackle unknown problems
iteratively by learning and its high flexibility as the state/action/reward are all user-defined.

113

Reinforcement learning has had notable achievements in several challenging real-world
scenarios, such as recently winning against a top-rated human player in the game, “Go.”

There are different types of reinforcement learning algorithms. They can be roughly categorized
into value-based, policy-based, actor-critic reinforcement learning algorithms, and others. Value-
based algorithms, such as the Q-Learning function, try to accurately predict the value (reward) of
each action in current situation (state). Policy-based algorithms try to iteratively improve an
implicit policy (usually a neural network) so it could directly decide the next action to take
without the need to know the exact value. Actor-critic algorithms are similar to a combination of
the former two approaches. They work by having a policy based on predicted values and then
update both the policy and the prediction of values in each step.

5.12.1 Problem Definition

In this study, the popular Q-Learning algorithm was first selected as the optimizer for the target
problem. As previously discussed, all “states,” “actions,” and “rewards” need to be defined so
the Q-Learning algorithm can work.

There are several possible ways to define the “state,” which is the description of current problem.
First, an extensive description of the pavement structure can be used as the state. For example, a
state can be described as a predefined, long vector covering each layer in the pavement structure
and all the parameters. This approach would make the algorithm universal as long as the target
problem could be described. However, this would make the state space infinitely large (number
of possible values to the power of vector length). Thus, the algorithm would take orders of
magnitude more data to train. An alternative way to define a state is to set it as empty. This is
feasible because the target pavement structure is static for a certain optimization. In this case,
there is no need for the algorithm to know the details of this pavement structure, and it only
needs to know that the pavement structure is going to be consistent across the optimization. This
significantly reduces the training time of the algorithm and makes the training much smoother as
all the data are based on the same pavement structure. This also makes sure the algorithm is able
to handle every optimization problem, as there is no need to fit the description of the pavement
structure into the predefined vector. The disadvantage of this approach is it needs to start
optimization from scratch every time as it cannot use the data from previous runs.

It is infeasible to directly use the variables as “actions,” which are possible actions the algorithm
could take, for two reasons. First, the actions are discrete, whereas the target problem needs very
fine-grained, continuous variables. Second, there could be many variables, and the number of
combinations is large. To get around this issue, in this study, the actions were set to be the
portion of change based on current variables. For example, the algorithm picks from the list (-5
percent, -1 percent, 0, +1 percent, +5 percent) and then applies it to the current variable. In this
way, the actions are fixed so the algorithm will not be confused, and it enables arbitrary fine-
grained change to the variables when multiple changes are combined together (e.g., two actions
combined together 0.99*1.01 = 0.9999 could reduce the variable by 0.01 percent). The only
disadvantage is that a positive variable cannot be turned into a negative one and vice versa. This
means the algorithm requires seed values for the variables.

114

The “reward” part is very straightforward as the RMSRE metric is a natural inverse reward.
Researchers use the -1*RMSRE as the reward. Thus, the algorithm aims to reduce RMSRE when
pursuing larger rewards.

5.12.2 Algorithm

With the state/action/reward being properly defined, the algorithm of Q-Learning can be
summarized as follows:

• Initialization: neural network N.
• Step 1: Fetch the current state s.
• Step 2: For every possible action a, get the predicted value N(s,a) from neural network.
• Step 3: Decide the next action a, based on predicted values.
• Step 4: Execute action a, and observe the consequences to get reward r.
• Step 5: Add the actual value V(s,a) = r to the training set of neural network N.
• Step 6: Train the neural network. Go to step 1.

Step 3 is a key component. The way algorithm decides its next action, called policy, needs to be
chosen carefully. A native, or greedy, approach is to always choose the action with the best
predicted values. Because the problem definition uses a static state, the greedy approach would
result in the optimizer choosing the same action throughout the optimization. On the other hand,
if the action is chosen randomly, then the optimization degenerates to random search, which is
inefficient given the large search space the target problem has, as discussed previously. Thus, a
good policy needs to consider the predicted values while having enough randomness. This is
called the exploit-exploration balance, which is a common challenge for reinforcement learning
algorithms. There are several approaches to achieve this balance. For example, the algorithm
could randomly choose from the top N best actions so that balance is achieved. Also, the
algorithm could assign a certain probability to every action based on their predicted value and
then sample one action based on the assigned probability, which is called the Boltzmann
distribution. Neither of these methods were selected in this study because they both introduce
extra hyperparameters that require tuning effort, which limits the generalization and robustness
of the optimizer. The final policy for the reinforcement learning optimizer was set as gradient
descent with random start. In this policy, the optimizer randomly starts from an action and then
repeatedly tries to move to another action in the neighborhood if that action has better predicted
values. This policy has all the merits discussed.

5.12.3 Input Proposal

Section 5.12.1 discussed the problem setting for reinforcement learning algorithms to function
and the related challenges. With the current workaround applied, the problem setting was
capable of handling continuous variables with different orders of magnitude scales. The way the
reinforcement learning optimizer chose its next action was further improved by fixing these three
key disadvantages:

• Local optimality. The actions currently used are the portion of changes based on current
variables. That means the next action would always be in the neighborhood of the current

115

variables. Once the optimization hits a local optimal, it is difficult to get out of it in this
manner.

• Scalability. Every action is a change to a certain variable. When the number of variables
increases, the number of actions to update the variables grows exponentially.

• Quadrant. The proportional change makes the variables unable to cross quadrant.

To address the disadvantages, a key feature of neural networks, called the differentiability, is
used. All neural networks have to be differentiable so that they can use a gradient-based
approach in training. Such differentiability means it is possible to analytically compute the
partial derivative of the output of neural network (the predicted value of action) with respect to
the input (action). The best part of this approach is that most modern machine-learning
frameworks have automatic differentiation engines so that the proposed partial derivative can be
computed automatically during runtime without the need for user inputs, as shown in Figure 78.

Figure 78. How a Neural Network Analytically Computes its Partial Derivative Automatically

Specifically, the neural network acts as a mapping between the input a, network weights w, and
the output v.

F(a,w) = v (131)

This means for a specific combination of input a and network weights w, the output v is
determined. The target is to find the action a′ that maximizes the output.

𝑎𝑎′ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐹𝐹(𝑎𝑎,𝑤𝑤)� = 𝑎𝑎 − 𝑠𝑠 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (132)

116

Here, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the partial derivative, s is the step size, and a is current action. In practice, the updated
equation is more sophisticated and includes momentum and approximation of second derivatives.

In this way, the optimizer can computationally get the action that the neural network believes to
be best. In this study, this technique is called “input proposal.” Because the neural network is
randomly initialized and the starting point of action is also random, the optimization has enough
randomness to keep a good exploit-exploration balance, as discussed in Section 5.12.2. For this
study, a safeguard was implemented to limit the range of update of the action to be within 10
times of current action. This was to prevent the neural network from giving unrealistic
suggestions, which is possible at the beginning of training when the neural network does not
have considerable knowledge of the target problem. The high-level workflow of the input
proposal in shown in Figure 79.

Figure 79. High-Level Workflow of How Input Proposal Technique is Implemented

5.12.4 Evaluation

Like previous optimizers, the reinforcement learning optimizer was evaluated on both the
synthetic three-layer structure and the field-measured data. The optimization progress on the
synthetic three-layer structure is shown in Figure 80. The final RMSRE was 1.24 percent.

117

Figure 80. Optimization Progress of Reinforcement Learning Optimizer on the Synthetic
Three-Layer Structure

The performance of the reinforcement learning optimizer was further evaluated on the field-
measured data. The recovered variables are shown in Table 33. The final RMSRE was 1.1259
percent. This is comparable with traditional optimizers.

Table 33. Optimization Performance of Q Learning Optimizer on Field-Measured Deflections

Layer Variable Seed Value
Recovered Value

by Optimizer

AC

Sigmoidal Coefficients Delta –0.9 –0.45020
Sigmoidal Coefficients Alpha 4.5 5.81494
Sigmoidal Coefficients betaPrime –0.7 –0.09034
Sigmoidal Coefficients Gamma –0.4 –0.16938
Modulus at 17 Hz (ksi) E1 356 770.1

Base
Modulus (ksi) E2 20 28.1
Rayleigh Damping
Coefficient βR BBase 0.003 0.0024465

Subgrade
Modulus (ksi) E3 5 13.4
Rayleigh Damping
Coefficient βR BBase 0.003 0.0024465

5.13 ENSEMBLE LEARNING

To date , several popular optimization methods have been implemented and evaluated. These
methods have shown strong heterogeneity in terms of robustness, convergence speed, and
performance. A natural question is whether these optimizers should be combined together to get
the best of them all. This is possible if the framework was carefully designed to handle the
combination of optimizations. This technique is called ensemble learning, which entails having

118

an optimizer start from where a previous optimizer ends. Ensemble learning is frequently used
for classification problems, as shown in Figure 81, and it is a great match for the backcalculation
optimization problem as a variety of optimization methods are developed.

Figure 81. Ensemble Learning by V7aLab (Kundu, 2022)

5.13.1 Framework Update

The optimization framework (Figure 82) is designed at the beginning of the optimization efforts
with several powerful features to support the smooth and highly efficient usage of optimizers.
However, multiple optimizers working together is not part of expected use cases for the
optimization framework. Thus, the framework is patched in aspects described in Sections
5.13.1.1 through 5.13.3.

119

Figure 82. Optimization Framework Overview with Ensemble Learning Controller

5.13.1.1 Ensemble Learning Controller

In the original design of the optimization framework, the optimization control is entrusted to the
optimizer. This includes where to try the next set of variables, when the optimization is
considered finished, etc. For a multi-optimizer case, optimization fails if there are multiple
control flows at the same time. Thus, a unified controller is implemented for the optimization
workflow. The updated control workflow and framework is shown in Figure 82. This is a
significant engineering effort as the optimizer needs to be refactored in a three-fold way. First,
the control part and the optimization part need to be separated. Next, the optimization part needs
to be tailored to fit the API of the controller. Finally, the optimizer needs to be modularized and
self-contained, which means it takes care of all its intermediate states and variables so they do
not get confused among optimizers and can be easily used by the controller. These three
requirements mean the optimizer has to be completely reworked, which adds up to a non-trivial
effort. The good news is that such effort is well-compensated as the reworked optimizer not only
enables ensemble learning but also enables many sophisticated controls that benefit the overall
optimization performance.

A key example is the adaptive stopping of optimization, which is related to a simple yet critical
question of when the optimization should be considered finished. Two commonly used criteria
are when a certain number of iterations are done and when the results do not change much in the
last certain iterations. In this case, those two criteria are not applicable. For the first criterion,
large numbers of iterations would prolong the optimization without improving the results,
whereas insufficient iterations would lead to suboptimal results. For the second criterion, many
optimizers would jump around the optimal point even if it converges; so, this criterion does not
apply in this case. With a unified controller, this dilemma can be easily alleviated by using
adaptive stopping. Adaptive stopping is a progress-based criterion where each optimizer starts
with certain initial budget/patience, and the budget/patience would be restored every time the
optimization progresses (i.e., achieves a new best RMSRE). In this manner, the optimization

120

would run indefinitely as long as the optimizer is still improving the results and would end when
the optimization converges.

5.13.1.2 Cache Sharing

Caching is a key mechanism in the optimization framework that greatly reduces the number of
actual PULSE_FE calculations, especially for the classic derivative-based optimizers. In previous
optimization workflows, optimizers report to the cache, yet with different standards. For
example, some optimizers take RMSRE larger than 100 percent as a failure, whereas others use
300 percent or an infinitely large number. In the updated framework, the cache has a hierarchy.
The system/framework cache is global, unique, and directly connected to the PULSE_FE so that
only the raw results are recorded. The optimizer cache is optimizer dependent and is periodically
synchronized with the system cache. In this manner, the PULSE_FE calculation will always be
recorded and available to all optimizers, no matter which optimizer invoked it. Also, the
optimizer can still have independent standards for the cache, such as failure.

5.13.1.3 Automatic Error Recovery

Note that the idea of ensemble learning is to have another optimizer take over where previous
optimization ends. Yet a very common reason for the optimization to end is the optimizer hitting
a dead-end or illegal point. For most non-learning-based optimizers, starting with a dead-end or
illegal point simply leads to failed optimization. To take on this challenge, an integrity check
should be implemented to detect if the current point is a bad starting point when switching
optimizers.

If the current point is detected to be a bad starting point, it should be determined how the
framework would pick a good starting point instead. A straightforward solution is to use a point
from the optimization history, yet there is a dilemma. On the one hand, an ideal starting point
should be far away from the current bad point, so the optimization does not fall into this bad
point again. On the other hand, an ideal point should be close to where the previous optimization
ends so the framework does not waste time redoing the same optimization. Researchers
addressed this challenge by using the Maxwell–Boltzmann distribution to pick a safe point
according to a probabilistic distribution based on RMSRE instead of distance. The Maxwell–
Boltzmann distribution originates from the thermodynamic theory that describes the distribution
of speeds among the particles in a sample of gas at a given temperature. The Maxwell–
Boltzmann distribution can be intuitively understood as:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎) = exp(𝑎𝑎)
∑exp(𝐴𝐴) , 𝑎𝑎 ∈ 𝐴𝐴 (133)

The chance of an item with value a being picked is equal to the exponential value of a over the
sum of exponential value of all the items. For backcalculation problem, the RMSRE could vary
with different orders of magnitude and guaranteed to be non-negative. Thus, a simpler and more
feasible form of Maxwell–Boltzmann distribution is used:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎) =
1
𝑎𝑎

∑ (1𝐴𝐴)
, 𝑎𝑎 ∈ 𝐴𝐴 (134)

121

In this way, any failed optimization would be recovered to a random point with good RMSRE
for the next optimizer to start from, as shown in Figure 83.

Figure 83. Automatic Error Recovery Starts Next Optimizer When Previous One Fails

5.13.2 Evaluation

The performance of ensemble learning is assessed by combining the Newton’s method optimizer
and reinforcement learning, using the field-measured data. These data originate from the LTPP
database for test section 01-0101 in Alabama, where the pavement section consists of a 7.4-inch
AC layer and a 7.9-inch unbound granular base layer constructed over untreated subgrade
material. The FWD data used in this study were collected on March 11, 1998, with a surface
temperature of 87 °F.

In this ensemble setting, Newton’s method optimizer and reinforcement learning were employed
interchangeably with a patience threshold of three. This means that when one optimizer fails to
show progress in three consecutive iterations, it yields control to the other optimizer. The overall
optimization progress is assessed by RMSRE in relation to the total number of Pulse
calculations, as depicted in Figure 84.

122

Figure 84. Ensemble Learning’s Optimization Progress Using Alabama Field-Measured Data

The final RMSRE is 2.705 percent, and the recovered variables are shown in Table 34. If the
optimizers are applied alone, then the Newton’s method optimizer converges at 50 percent
RMSRE as the seed variables are not close enough to the optimal points, and the reinforcement
learning optimizer converges at around 10–20 percent RMSRE. Yet when combined by the
ensemble learning, these two optimizers with the interleaving process get the RMSRE to as low
as 2.7 percent, which demonstrates the potential of ensemble learning.

Table 34. Optimization Performance of Ensemble Learning on Alabama Field-Measured Data

Layer Variable Seed Value

Recovered
Value by
Optimizer

AC

Sigmoidal Coefficients delta –0.9 –0.2677
Sigmoidal Coefficients alpha 4.5 3.9329
Sigmoidal Coefficients betaPrime –0.7 –0.0824
Sigmoidal Coefficients gamma –0.4 –0.6468
Modulus at 17 Hz (ksi) E1 356 324.1

Base
Modulus (ksi) E2 20 6.9
Rayleigh Damping
Coefficient, αR (1/s) alphaR 0.003 –46.6318

Subgrade
Modulus (ksi) E3 5 33.3
Rayleigh Damping
Coefficient, βR (1/s) betaR 0.003 –5.973e–05

123

5.14 CROSS-COMPARISON OF OPTIMIZATION METHODS

While several of the evaluated optimizers were able to optimize the target problem reasonably
well, there is a need to evaluate the optimizers more extensively in terms of their recovered
master curves, robustness, etc. This section presents a cross comparison of optimization methods
implemented so far to give a better understanding of their relative strengths and weaknesses.

5.14.1 Comparison of Convergence Speed

In the earlier evaluations, the iteration number was used as the metric of convergence speed. It is
a common metric and works well under the same optimizer. Yet as there are heterogeneous
optimizers in this study, the iteration number is no longer a good choice for comparison. For
example, the Powell’s method optimizer uses dozens of function evaluations for each iteration
whereas the Nelder–Mead optimizer uses about three function evaluations each iteration. Thus,
researchers decided to use the number of function evaluations (i.e., the number of calls to FE
model) as the metric for comparison and rerun the earlier evaluation based on the new metric.
The results are shown in Figure 85.

Figure 85. Comparison of Optimizers’ Convergence on Synthetic Three-Layer Pavement
Structure (The y-axis is log-scale.)

5.14.2 Recovered Variables for Synthetic Three-Layer System

Table 35 shows all recovered variables from the optimizers in an aggregated view. It can be
concluded that the success rate of recovering variables depends on variable types. Most
optimizers can find the target moduli for layers, whereas only some optimizers can find the right
Rayleigh damping coefficients. For the sigmoidal coefficients, further evaluation is needed as
there could be multiple sets of sigmoidal coefficients that all show a similar pattern in a certain
range of the master curve (certain range of frequencies or time).

124

Table 35. Recovered Variables from All Optimizers for Synthetic Three-Layer System

Optimizer delta alpha betaPrime gamma
E1 at 17
Hz (ksi) E2 (ksi) BBase E3 (ksi) BSG

Target
Values –0.13400 3.7030 –0.46512 –0.54800 469.12 40.000 0.002000 5.000 0.002000

Newton –0.92000 4.9410 –0.46856 –0.39800 447.96 40.229 0.001930 5.000 0.001970

BFGS –0.92500 4.6820 –0.28900 –0.69700 424.76 39.882 0.001500 4.959 0.001980

L–BFGS–B –1.0080 4.5200 –0.26200 –0.64700 222.49 49.881 0.003010 5.101 0.001000

Powell –1.3160 4.4510 –0.89700 –1.15100 542.34 39.089 0.001960 4.999 0.001980

Nelder–Mead –0.00704 5.3218 –0.00271 –0.01290 477.22 38.316 0.003010 5.022 0.002160

Bayesian –1.9911 4.9623 –0.47536 –0.23882 25.11 66.877 0.003406 5.773 0.001807

Levenberg–
Marquardt –0.18517 3.7032 –0.62250 –0.49035 476.20 39.786 0.002132 5.003 0.002022

Trust Region 0.95367 2.7299 0.08060 –0.50326 476.01 39.727 0.002144 5.006 0.002007

Dogleg 0.24286 3.3323 –0.21190 –0.61459 454.94 40.314 0.001908 4.997 0.001985

125

5.14.3 Recovered Master Curves

One interesting phenomenon from previous evaluation results is that every optimizer gave
different master curve variables, yet most of them still achieved good RMSRE. Therefore, the
reasonableness of the recovered variables from the various optimizers must be evaluated by
comparing the backcalculated master curves for the AC layer. Evaluations were carried out on
the synthetic three-layer pavement structure. Results, shown in Figure 86, indicate that most
optimizers were able to fit the target master curve (i.e., the input master curve in the forward
calculation) suitably within the frequency range of the measurements induced by the FWD
testing (~10–100 Hz). This demonstrates the effectiveness of the optimizers in backcalculating
the portion of the master curve within the excited frequencies under the load.

Additional ways to recover the target master curve more accurately were explored. The key
challenge was that the target line segment (10~100Hz) was too short, whereas the fitting
equation had four free variables (see Section 4.2.1). Therefore, multiple sets of variables could
have fit the target line segment reasonably well, as shown in Figure 86. However, not all of those
fitted variables are feasible in practice. Thus, researchers proposed to co-optimize deflections
measured at different temperatures on the same pavement structure to improve the feasibility of
the recovered variables. The key idea of this proposal is that the change of temperature would
cause the master curve to shift horizontally because of the time-temperature superposition
principle (TTSP). Thus, by using multiple temperatures there would be multiple target line
segments, which could be an improvement.

Figure 86. Comparison Between the Backcalculated Master Curves from All Optimizers and the
Target Master Curve

5.14.4 Trustiness of the Recovered Master Curves

Based on the research up to this point, it could be concluded that the recovered master curves
matched the target master curve only in the test frequency range (i.e., excited load-induced
frequency range). Therefore, it should be determined how users know which part to trust in the

126

recovered master curves. A key observation of this study was that different optimizers gave
diverse master curves. However, all the best-fit curves tended to overlap within the test
frequency range. Considering that most classic optimizers, like the Newton optimizer, do not
have convergence guarantee, it means for different seeds, these classic optimizers will give
different results. Thus, researchers proposed to generate the trust region directly from the
deflections without the need of a priori knowledge, i.e., to use different seeds to get different
master curves. Then, the overlapping area can be used to get the test frequency range.

To determine how the trust region of the master curve is located using a Newton optimizer,
multiple optimization processes were run with different initial variables (seeds). All the proposed
master curves from these optimization processes were recorded, as shown in Figure 87; the blue
curves indicate the proposed master curves, and the thick black curve shows the target master
curve.

As shown in Figure 87, there is no obvious pattern because the master curves from the optimizer
are randomly overlapped, and some curves are showing even infeasible patterns due to the
unconstrained nature of Newton’s method. Thus, the curves are filtered with the RMSRE metric.
The assumption is that if a master curve can generate deflections very similar to the target
deflections, then it should be closer to the target master curve.

Figure 87. Comparison of the Backcalculated Master Curves from the Newton Optimizer with
Different Seeds

Figure 88 shows the master curves with an RMSRE of 5 percent of less. The pattern is very clear
in the figure where the master curves diverge in all other areas but the ~10–100Hz range. When
comparing the overlapped regions to the target master curve, they are nearly identical. That
means this approach can successfully locate the trust region in a master curve without the
knowledge of the actual test frequency range used in the field experiments (i.e., during
HWD/FWD testing).

127

Figure 88. The Backcalculated Master Curves from the Newton Optimizer with Different Seeds
Showing only the Curves with an RMSRE of Five Percent or Less

An automatic approach was proposed in this study to determine this trust region by considering
the coefficient of variation (COV) in terms of each frequency. COV is a statistic of a variable
that stays independent of its mean (scale). Thus, the COV at each frequency gives a numerical
measurement of how much the master curves overlap at each frequency as shown in Figure 89.

Figure 89. The COV Percentage at Each Frequency for the Master Curves

The next step was to determine what should be the threshold for a frequency that is considered to
be within the test frequency range. As shown in Figure 90, the acceptable repeatability
recommended by AASHTO T 378 (2017) was implemented for the expected moduli.

128

Nominal
Maximum
Aggregate
Size, mm

Average |E*|, MPa

Dynamic Modulus

Sr
%

%

Acceptable Range for n Specimens, % of Average

n=2 n=3 n=4 n=5 n=6

19 ≥ 137 to < 200 20 56 66 72 78 80

19 ≥ 200 to < 500 16 46 54 59 64 65

19 ≥ 500 to < 1,000 14 38 45 49 53 55

19 ≥ 1,000 to < 2,000 12 32 38 42 45 46

19 ≥ 2,000 to < 5,000 9 27 31 34 37 38

19 ≥ 5,000 to < 10,000 8 22 26 28 31 32

19 ≥ 10,000 to < 16,400 7 19 22 24 26 27

Note: Sr% = repeatability coefficient of variation for |E*|, percent

Figure 90. Repeatability COV Suggested by AASHTO T 378 (Red box points to the acceptable
COV values for a modulus between 1,000 and 5,000 MPa.)

To validate the correctness of the frequency inferred by this approach, the recovered master
curve is compared to the target master curve under three different temperatures: 39.2 °F, 68 °F,
and 104 °F. As shown in Figures 91 through 93, the recovered master curves match closely with
the target curves within the inferred frequency range regardless of seed values used by the
Newton optimizer. This suggests the complex potential of the proposed method.

Figure 91. Comparison of the Recovered Master Curve and the Target Master Curve in Trust
Frequency Range at Temperature 39.2 °F

129

Figure 92. Comparison of the Recovered Master Curve and the Target Master Curve in Trust
Frequency Range at Temperature 68 °F

Figure 93. Comparison of the Recovered Master Curve and the Target Master Curve in Trust
Frequency Range at Temperature 104 °F)

Now that the correctness of the inferred frequency range is validated, the trust frequency ranges
inferred from different temperatures are used to improve the quality of the recovered master
curves. The key idea is that the master curve of the same pavement structure at different
temperatures shares all variables, but the betaPrime and the relationship of the target master
curves are shifting horizontally. Thus, when there are three target master curve segments, it is
possible to compute the shifting of each temperature:

log(𝑓𝑓𝑟𝑟) = log(𝑓𝑓) + 𝑎𝑎1(𝑇𝑇𝑅𝑅 − 𝑇𝑇) + 𝑎𝑎2(𝑇𝑇𝑅𝑅 − 𝑇𝑇)2 (135)

log(𝑎𝑎𝑇𝑇)= 𝑎𝑎1(𝑇𝑇𝑅𝑅 − 𝑇𝑇) + 𝑎𝑎2(𝑇𝑇𝑅𝑅 − 𝑇𝑇)2 (136)

More details of these equations can be found in Section 4.2.1.c. Based on previous analysis, the
fitted 𝑎𝑎1 and 𝑎𝑎2 are found to be 0.06561 and 0.000106, respectively. The fitted line is shown in
Figure 94. With the known horizontal shifting, the master curve segments could be moved to a

130

reference temperature and used to fit the target master curve more preciously than fitting with
only one segment. The recovered master curve by this approach is shown in Figures 95, 96, and
97. For all temperatures, the fitted master curve closely overlaps with the target even outside the
test frequency range. This advantage is more obvious when comparing with the data in Figure
86, suggesting the proposed method is more effective. Table 36 summarizes the variables
determined from the optimizer along the variables from the fitted master curves at three
temperatures.

Figure 94. Linear Fitting of Temperature vs Shifting of the Master Curve log(aT)

Figure 95. Fitted Master Curve with Three Master Curve Segments Shifted from Other
Temperatures at 39.2 °F

131

Figure 96. Fitted Master Curve with Three Master Curve Segments Shifted from Other
Temperatures at 68 °F

Figure 97. Fitted Master Curve with Three Master Curve Segments Shifted from Other
Temperatures at 104 °F

132

Table 36. Comparison of the Variables from the Optimizers vs the Variables from the Fitted
Master Curves at Three Temperatures

Parameters
Fitted Parameters from

Optimizer
Fitted Parameters from Master

Curves
Target

Parameters
39.2 °F (10–1,000Hz)

delta 0.7756 1.0260 0.6991
alpha 5.5526 2.5156 2.7761
gamma –0.0560 –0.5655 –0.5887
beta′ 0.2347 –1.6305 –2.1747
E2 34.872 – 35
E3 7.013 – 7
alphaR 29.74 – 30
betaR 0.0030 – 0.003

68 °F (1–1,000Hz)
delta 1.3473 1.0260 0.6991
alpha 2.4079 2.5156 2.7761
gamma –0.4551 –0.5655 –0.5887
beta′ –0.1075 –0.51218 –0.72193
E2 34.975 – 35
E3 7.003 – 7
alphaR 29.930 – 30
betaR 0.002997 – 0.003

104 °F (10–100Hz)
delta 0.4332 1.0260 0.6991
alpha 4.9758 2.5156 2.7761
gamma –0.3083 –0.5655 –0.5887
beta′ 0.9344 0.7459 0.4457
E2 35.029 – 35
E3 7.002 – 7
alphaR 29.921 – 30
betaR 0.003003 – 0.003

–Not applicable

This further demonstrates the power of the proposed method by comparing the original variables
provided by optimizer, the variables from fitted master curves, and the target variables. The
variables from the fitted master curves are more similar to the target variables. This suggests that
this approach could serve as a complementary part to existing optimization approaches.

133

5.14.5 Summary

Table 37 summarizes the optimizers that were evaluated in this study along with their properties
in terms of:

• Algorithm computation cost
• Well-fitting synthetic one-layer system deflections
• Well-fitting synthetic three-layer system deflections
• Well-fitting field-measured three-layer system deflections
• Constrained optimization

Table 37. Summary of Optimization Methods and Their Properties

Optimizer

Algorithm
Computation

Cost

Well-
Fitting,

Synthetic,
One-Layer

System
Deflections

Well-Fitting,
Synthetic,

Three-Layer
System

Deflections

Well-Fitting,
Field-

Measured,
Three-Layer

System
Deflections

Constrained
Optimization

First-Order
Newton Low Yes Yes (0.05%) Yes (0.007%) No

Second-Order
Newton Low No No

(Diverged)
No
(Diverged) No

BFGS Low Yes Yes (0.42%) No (13.20%) No
L-BFGS-B Low Yes Yes (1.36%) Yes (1.46%) Yes
Powell Low Yes Yes (0.12%) Yes (1.95%) Yes

Nelder–Mead Low – Yes (0.58%) Moderate
(2.34%) No

Bayesian Moderate – Moderate
(3.85%) No (6.74%) Yes

Levenberg–
Marquardt Low – Yes (0.085%) Yes (0.67%) Yes

Trust Region Low – Yes (0.098%) Yes (0.693%) Yes
Dogleg Low – Yes (0.055%) Yes (0.676%) Yes
Reinforcement
Learning High – Yes (1.24%) Yes (1.125%) Yes

–Not evaluated

6. GRAPHICAL USER INTERFACE

With the many developments in the FE methodology and optimization, the end goal of this
project is to deliver an easy-to-use tool for pavement engineers. This study delivered Graphic
user interface (GUI)-based software. The software is:

1. Graphical—users are able to use all functionality of this software by interacting with

its graphic interface.

134

2. Compatible—the software supports all modern operating systems including Windows
7, 10, and 11.

The software GUI uses a button-page-based design. Currently, it consists of the Create Mesh and
FWD File button (call and execute mesh generator program), the Material Property button
(material property setting), the Forward Analysis button (perform forward calculation), and the
Dynamic Backcalculation button (perform the backcalculation). These four buttons on the main
page split the whole workflow into four steps with their corresponding contents. Users need to
finish the work on Create Mesh and FWD File button before working on the Material Property
button. The Forward Analysis button cannot be enabled before finishing the content in buttons
Create Mesh and FWD File and Material Property. At the same time, the software allows dual
unit systems throughout the program.

The following deliverables are targeted for the GUI software; it is a standalone software tool that
performs backcalculation and optimization. It ships with:

• Installer
• Easy-to-use GUI
• Constraints for optimization
• Robust error handling

The software is finished with python code and properly aligns with the optimization code
naturally.

6.1 DESIGN METHODOLOGY

Several important principles need to be enforced on the design of the BAKFAA Dynamic
Backcalculation (DynaBAKFAA) software GUI before GUI coding can be conducted (note:
Software GUI design refers to the process of creating user interfaces for software applications).

• Simplicity. Keep the interface simple and easy to use. Avoid clutter, unnecessary
features, and complex designs. A simple and intuitive interface can help users to quickly
understand how to use the software. In this GUI program, layout is kept simple and easy
to understand.

• Consistency. Consistency in design means that all elements of the interface should look
and function the same way throughout the application. This helps to avoid confusion and
makes the interface more predictable.

• Feedback. The interface should provide clear and timely feedback to the user. For
example, when a button is clicked, the user should see a response or an indication that the
action was successful.

• Error prevention and recovery. The interface should be designed to prevent errors and to
help users recover from them if they do occur. For example, providing helpful error
messages can help users to correct mistakes or avoid them in the first place.

• Visibility. The interface should make important information and features clearly visible to
the user. This can include using color, size, or placement to draw attention to important
elements.

135

• Responsiveness. The GUI should be responsive and efficient, with fast loading times,
smooth animations, and minimal lag. This helps to make the software feel more polished
and professional.

• Aesthetics. The interface should be visually appealing and well-designed. This can
include using color, typography, and other design elements to create a pleasing and
engaging interface.

By following these principles, the software interfaces were created in a manner to be easy to use,
visually appealing, and effective at helping users to accomplish their goals.

6.2 ARCHITECTURE

GUI architecture refers to the design and organization of the various components and modules
that make up the user interface of a software application. A DynaBAKFAA GUI architecture
can provide a good user experience by making the application easier to use and navigate.

The DynaBAKFAA GUI consists of four main buttons, each of which corresponds to a distinct
functional module (Figure 98). Each module is independent and can interact with others to some
extent.

Figure 98. DynaBAKFAA Architecture of Software GUI

6.2.1 Main Page

The main interface is mainly composed of four buttons, each of which lead the user to four
different main functional pages, as shown in Figure 99.

136

Figure 99. Main Page of DynaBAKFAA Software GUI

The detailed introductions of the main page are as follows:

• Create Mesh and FWD File

o Directly call and run the mesh generator program (Application).
o Users need to fill out the input information and generate the mesh file.

• Material Property

o “Create Mesh and FWD File” button content needs to be finished before this page.
o Users can edit material properties for each layer and save the changes.

• Forward Analysis

o “Material Property” button content needs to be finished before this page.
o Make forward analysis calculation and plot the results.
o Users can edit the location settings before running the forward analysis.
o Users can save comma-separated values (CSV) to customized path.

• Dynamic Backcalculation

o Backcalculation page.
o Users receive real-time update of the calculation progress.

6.2.2 Create Mesh and FWD File

The Create Mesh and FWD File page forks a process and calls the MeshGenerator program
asynchronously (Figure 100). Once the MeshGenerator program is launched, other pages are
disabled before users finish the MeshGenerator program.

137

Figure 100. Create Mesh and FWD File Button Call MeshGenerator Program

The GUI of the MeshGenerator is shown in Figure 100. Users need to generate the mesh file
(.inp format) and the mesh file is used in the upcoming steps. At the same time, once the
MeshGenerator program is terminated, it signals the DynaBAKFAA GUI program to enable the
disabled buttons. The generated mesh file is saved to a path within the working directory and the
path is under a hidden directory without user’s access. The mesh file and the material property
file are used to perform the forward and backward calculations.

6.2.3 Material Property

The Material Property page is where users specifically define all the properties of each pavement
layer. The number of layers on this page is flexible and determined by the user’s input from the
MeshGenerator program. The GUI can display any number of layers, and users are able to
customize all necessary material properties within this page. For each layer, there are certain
properties that can be set and customized as per the user’s requirements. These properties include
(Figure 101):

• Layer Type: Linear Elastic, Viscoelastic
• Modulus
• Layer Thickness
• Density
• Poisson’s Ratio
• Rayleigh damping coefficients α and β
• Sigmoidal function coefficients for viscoelastic modulus α, β’, γ, and δ

These are the properties of the material for each layer, and this information is used to run the
forward analysis in the next step.

138

Figure 101. Material Property Page of Software GUI

6.2.3.1 Handling US and SI Units

DynaBAKFAA GUI supports both US and SI unit systems simultaneously. This means that
users can choose to work with either unit system based on their preference or the requirements of
their own project.

The US unit system is commonly used in the United States and includes units such as inches,
feet, pounds, and gallons. The SI unit system is the international standard and includes units such
as meters, kilograms, and liters.

With the GUI software’s ability to support both unit systems, users can easily switch between
them and work with the one that is most convenient for their task. This flexibility can save time
and effort for users who might need to work with different unit systems in their work or research.

6.2.3.2 Persistent Changes

The Save and Exit button allows users to save any changes made to a cached file and exit this
page. The input information will be saved and cached in the designated path within the software,
with a cache lifespan that lasts for the duration of the software’s runtime. This means that when
the software is closed completely, the input information from the previous session will not be
retained, and when the software is opened again, the input information will revert to the default
values.

139

6.2.3.3 Input Validation Check for Data Entry

Input validation check for every entry means the process of verifying and validating the data
entered by the user before it is retained to the cached file by the GUI. This is an important step to
help ensure the accuracy and integrity of the data and prevent errors or issues from occurring
during the processing of the data.

The DynaBAKFAA input validation checks include checking for the correct data type, verifying
that the data fall within acceptable ranges or limits, and ensuring that the data are in the correct
format.

By performing input validation checks for every entry, DynaBAKFAA GUI software can ensure
that the data entered by the user are accurate and valid before processing. This helps prevent
errors and issues that might arise from processing invalid data, such as crashes, incorrect
calculations, or incorrect outputs.

With the input validation check, the software shows a warning (example shown in Figure 102)
that details the error types and where the error happened so that users can identify and modify
the error conveniently.

Figure 102. Error Warning Information

6.2.4 Forward Analysis

The Forward Analysis button takes the mesh file generated by the first button and the material
properties information stored in a cached JSON format file in the second button, along with the
number of nodes as parameters and passes them into the calculation program PULSE_FE to
perform the forward analysis.

After running the PULSE_FE calculation program with the previous input, the corresponding
results are plotted based on the distance parameters as shown in Figure 103. On the left Y-axis,
surface deflection is represented, on the right Y-axis FWD load is represented, and the X-axis
represents time. Different curves correspond to results from different radial distances.

An option (Export to CSV button) is also provided to store the detailed results generated by the
calculation to a customized path within a CSV format file. This option can be used by
researchers for more in-depth exploration.

140

Figure 103. Deflection Plotting Page of Software GUI

6.2.5 Dynamic Backcalculation

The Dynamic Backcalculation page of software GUI layout is shown in Figure 104. The target
page has the full functionality of the most viable optimization methods discussed in Section 5.

Figure 104. Dynamic Backcalculation Page of Software GUI

141

6.3 ROBUSTNESS

6.3.1 User Input Check

Users need to give the pavement structure layer information that is in different orders of
magnitude. Thus, it is important the software correctly parse user input. Currently the software
can take arbitrary numbers/floats even with scientific notations and will prompt for incorrect
inputs.

6.3.2 Applied Loads

PULSE_FE expects the applied loads to start from (0,0), but that is not always the case as the load
level for location 0 is often missing. Thus, the Dynamic Backcalculation software will
automatically set (0,0) if it detects the load information for location 0 is missing.

7. DATABASE

The ensemble learning training phase, while yielding good results, often imposes a notable time
burden, potentially extending to a duration of up to 20 hours. Such a prolonged timeframe
presents an obstacle for most users, for whom obtaining prompt and quality outcomes is of
importance. Considering this challenge, strategies to expedite this training process were explored
to make the use of the tool more practical and accessible to users.

The solution to this predicament centers on a two-fold approach, the pivotal element of which
revolves around harnessing the power of a precomputed PULSE_FE data set. This data set is
generated through extensive prior runs and then cataloged within a dedicated database. The
creation of the database benefits the training process in two aspects: (1) a good initial starting
point could largely speed up the convergence process and (2) the cached database entries could
be reused by the program.

7.1 MOTIVATIONS

The PULSE_FE program requires a significant amount of time to produce results—typically
ranging between 40 to 80 seconds—and is contingent upon varying material properties and mesh
file sizes. In the developed operational workflow, these PULSE_FE simulation outcomes serve
as the foundation for the machine-learning training. Notably, the machine-learning training
endeavor necessitates numerous iterations, often numbering in the hundreds or even thousands,
to attain convergence.

In the context of the established workflow, each training iteration hinges upon the availability of
PULSE_FE results. Consequently, a single iteration demands at least 40 seconds to complete.
Based on prior experiences, the cumulative training process can extend beyond 20 hours in
pursuit of an acceptable solution.

The primary rationale behind establishing a dedicated database lies in its capacity to significantly
curtail the requisite training time. By conducting an exhaustive execution of more than 3 million
instances of the PULSE_FE program and systematically cataloging the resulting data, the

142

database offers the ability to query these outcomes without the need for program re-execution.
This database infrastructure affords the valuable capability to selectively identify optimal initial
values and to capitalize on previously generated results throughout the course of the training
process, thereby significantly enhancing its efficiency.

The database is built with a key-value pair structure, wherein the key corresponds to a specific
parameter configuration, and the associated value captures the PULSE_FE results. This paired
information is stored within the files, enabling swift and efficient querying during database use.

The process of ensemble-learning training, as shown in Figure 105, has the possibility of
yielding highly favorable outcomes. It frequently entails a considerable investment of time, often
spanning several hours or even extending to tens of hours, before reaching an optimal solution.
Within this framework, two paramount components exist that have a substantial influence on the
training speed:

• Initial Point Selection: The choice of the initial point plays a pivotal role in influencing
the trajectory of the training process. Ensuring an informed selection at this juncture can
significantly expedite the convergence of the ensemble-learning process.

• Running times of PULSE_FE: An integral facet of the training workflow, the

PULSE_FE running time stands out as the most computing-intensive element. It can act
as a bottleneck, impeding the overall training speed.

Figure 105. Database Involved in the Training Process

7.1.1 Selection of Initial Points

The machine-learning training process is based on Stochastic Gradient Descent (SGD). In a large
search space, the selection of the starting point is crucial to the training performance. The
selection of initial points refers to the starting point or initial values chosen for the model’s
parameters before the optimization process begins. In machine learning and optimization, the
choice of initial values can have a significant impact on the convergence and efficiency of the
optimization algorithm, as shown in Figure 106.

143

Figure 106. Selection of Initial Starting Point

How initial points impact SGD can be summarized as follows:

• Convergence Speed—The initial values can affect how quickly the optimization
algorithm converges to the optimal solution. Poorly chosen initial values might result in
slow convergence or the algorithm getting stuck in suboptimal solutions.

• Convergence to Global Optimum—For complex loss surfaces, such as in high-
dimensional spaces, different initial values might lead to different local minima. Starting
closer to the global optimum could increase the chances of finding a better solution.

• Stability—Poorly chosen initial values might lead to numerical instability during the
optimization process. This instability can result in erratic behavior of the optimization
algorithm and potentially prevent it from finding a good solution.

• Generalization—The initial points can also influence the generalization performance of
the trained model. Depending on the optimization path followed, the model might
generalize better or worse to new, unseen data.

• Avoiding Plateaus—In some cases, starting from certain initial points might lead to
getting stuck on plateaus or flat regions of the loss surface, slowing down the
optimization process.

To mitigate the impact of initial points in SGD and other optimization algorithms, practitioners
often use techniques such as:

• Random Initialization—Initialize the parameters with random values drawn from a
suitable distribution. This can help in exploring different regions of the loss surface.

• Pretraining—In some cases, pretraining a model on related tasks or using unsupervised
learning can provide better initializations for the final optimization task.

144

• Learning Rate Scheduling—Adjust the learning rate during training to account for the
initial point’s impact and potentially reduce the chances of overshooting or getting stuck.

• Weight Regularization—Applying weight regularization techniques, such as L1 or L2
regularization, can help control the initial point impact by encouraging the model to start
from a more centered position.

• Ensemble Methods—Training multiple models with different initializations and
averaging their predictions can help mitigate the risk of getting stuck in poor solutions.

The choice of initial values in SGD and other optimization algorithms can play a crucial role in
determining the optimization process efficiency, convergence, and the quality of the final
solution. Experimenting with different initialization strategies and monitoring the optimization
process are important practices to achieve better results.

In the established workflow, the RMSRE can be calculated beforehand to measure whether the
point is good or not. Thus, the database can play an important role in this process because all the
points inside the database can be iterated to find the best initial point at the start of the training
process.

7.1.2 Cached Training Results

In the training process, each run generates a new data point, which is stored in the program’s
cache for future use. During subsequent runs, before starting the PULSE_FE computation, the
process checks the cache. If the data point is already cached from previous runs, rerunning
PULSE_FE is avoided, and the cached result is directly used. This prevents unnecessary
repetitions and reduces the total training time by leveraging existing data points. This approach
helps to optimize efficiency and resource usage in the established training workflow.

7.2 DATABASE CREATION

The database scope is determined by a fusion of various feature dimensions working in tandem,
including:

• FWD Load Duration (ms)
• Layer 1 Thickness (inches)
• Layer 2 Thickness (inches)
• Layer 3 Thickness (inches)
• Sigmoidal alpha
• Sigmoidal Beta
• Sigmoidal Gamma
• Sigmoidal Delta (psi)
• Modulus Layer 2 (psi)
• Modulus Layer 3 (psi)
• Rayleigh Alpha (1/s)

145

• Rayleigh Beta
• Modulus Layer 4 (psi)

For the running results from the PULSE_FE program, the following five values for each of the
nodes, 0, 8, 12, 18, 24, 36, and 60, are collected. There are 35 values in total as the value of the
key-value pair.

• Peak deflection
• Fifty-percent duration
• Time at peak
• Fifty-percent left time
• Fifty-percent right time

The amalgamation of these dimensions results in a total of 3,265,920 combinations. A
preliminary assessment of the aggregate runtime for these combinations suggests an approximate
duration of 1 month when leveraging 50 computing nodes. The matrix of the combination
calculation process is shown in Figure 107.

Figure 107. Matrix of Database Combinations

Initially, computing resources from the University of Nevada, Reno (UNR) supercomputing
center were pursued. Although access to these resources was granted at no cost, the challenges to
execute the PULSE_FE program on a Linux system were insurmountable. This is most likely
because the program is a complicated Windows program with various versions of dependency.
Despite concerted efforts, this path ended in a setback.

Accordingly, cloud computing was pursued. Cloud computing managed to successfully execute
the program and create a comprehensive database. The cloud computing effort yielded a
formidable cache of approximately 4 million data points, fortifying the database, and affording
users a potent repository for future utilization.

146

7.3 CLOUD COMPUTING

After thorough investigation, it was determined that cloud computing stands as an optimal
solution for executing the database generation workflow. By briefly analyzing the computing
scales with the following cloud-computing details, the process was profiled on multiple types of
Amazon Web Services (AWS) cloud instances.

• 3,265,920 data points
• Can run each single PULSE_FE run in up to 40 seconds
• Runs parallel computations on 50 nodes
• About 1 month computation time
• 3,265,920 results checkpoints
• Combines all files to a general database

The t2.medium instance was found as the optimum choice to use for the following reasons:

• The t2.medium instance offers compatibility with the Windows operating system.
• Among the available computing nodes, the t2.medium instance is the most suitable

choice to effectively handle the execution of PULSE_FE.
• The t2.medium instance offers the most cost-effective pricing.

During the evaluation, a comparative analysis of prices across various regions revealed a notable
discrepancy. Specifically, the cost for identical instances in the U.S. Eastern region (Northern
Virginia) was discernibly 13 percent lower than that in the U.S. Western region (California).
Given the intrinsic nature of the PULSE_FE program, the selection of the geographical region
holds no bearing on its performance. Thus, the U.S. Eastern region (Northern Virginia), was
selected.

7.3.1 Preparation of the Code

The AWS Boto3 python package was used as the code API to interact with the actions on the
cloud instances. AWS Boto3 is the AWS SDK for Python. It provides a convenient and
programmatic way to interact with various AWS services using Python code. Boto3 allows
developers to write scripts, applications, and automation tools to manage and interact with AWS
resources.

With Boto3, a wide range of tasks can be performed, such as creating and managing EC2
instances, interacting with S3 buckets, managing DynamoDB tables, and configuring networking
resources. It abstracts the complexities of making API requests and handling authentication,
making it easier for developers to integrate AWS services into their Python applications.

Boto3 provides a comprehensive set of functionalities to interact with AWS services, and it is
widely used by developers and development and operations (DevOps) professionals for cloud
infrastructure management, data processing, and building serverless applications, among other
use cases.

147

7.3.2 Running the Database Generation Process

An impressive fleet of more than 70 AWS t2.medium instances was effectively deployed on the
cloud and strategically harnessed to execute the PULSE_FE program in parallel. During the
initial phase, a cautious approach was adopted, initiating operations with a subset of 20 nodes.
This preliminary testing phase ensured the seamless functionality and flawless execution of the
program. Subsequently, operations were progressively scaled up to encompass 50 nodes during
less demanding periods. Moreover, during peak hours characterized by heightened computational
demand, the full complement of 70 nodes was engaged to accommodate the substantial
processing requirements of the program. This strategic use of computing resources optimized
efficiency and productivity in support of the project goals.

7.3.3 Finalizing the Database

Following an intensive 30-day effort, a total of 3,265,920 data points from 70 nodes were
successfully collected and consolidated into a single file. These results were analyzed, and data
from checkpoints were parsed to establish key-value pairs using the specified features and
values.
7.4 SUMMARY

Upon successfully creating the database and strategically curating an optimal initial starting
point, the convergence of training iterations becomes significantly streamlined. As an example,
Figure 108 illustrates the training process for a specific pavement structure (FWD 30 ms, layer 1
thickness:14.2 inches, layer 2 thickness: 7 inches).

For the specified pavement structure, a selection of candidate points is made, considering the
similarity of the pavement structures in the database. Through an iterative process involving
these candidate points and the calculation of corresponding RMSRE values, the best candidate
point is identified as the initial training point. Figure 108 illustrates the training process,
demonstrating rapid convergence and achieving a favorable RMSRE of 1.43 percent within
150 iterations. Initial evaluations indicate that, in most instances, training can be completed
within an hour, a significant improvement compared to the previous range of 20 hours when
starting points are not guided.

148

Figure 108. The Training Process with the Selection of the Initial Point

8. OVERALL SUMMARY AND CONCLUSIONS

This study created an effective and capable finite element (FE) module to assess responses from
multilayer pavement structures. It handles linear elastic and viscoelastic isotropic materials under
both static and dynamic heavy weight deflectometer (HWD)/falling weight deflectometer (FWD)
loading conditions. Validation involved comparing surface deflections with ABAQUS, yielding
identical results. Notably, the module completes calculations in just 1 to 3 percent of the time
ABAQUS requires, a significant achievement for dynamic backcalculation feasibility.

Dynamic backcalculation employed the Newton-Raphson root-solving algorithm. Demonstrating
the capacity to predict the asphalt concrete (AC) master curve, however, proved challenging.
Backcalculation for a Construction Cycle (CC)-9 flexible test item delivered reliable layer
variables. Analysis of various FWD drops revealed mild stress-softening behavior in the
aggregate base and subgrade layers. A parametric study involved 15,552 pavement structures via
FE modeling, yielding a preliminary list of significant FWD parameters for the backcalculation
process.

An optimization framework was established to automate the backcalculation, seamlessly linking
pavement structure modeling, preprocessing, FE modeling, and analysis. Calculated parameters
could then be directly obtained from the specified variables without manual intervention.
Implementing various optimizers like Newton-Raphson, Quasi-Newton, Powell, Nelder–Mead,
Bayesian, and Kalman, coupled with different problem formulations, aided the development and
evaluation of the optimization framework. Constrained optimization enhanced practical solution
generation. Experimental evaluation, using synthetic and field-measured data, confirmed the
effectiveness of the optimization methods and the reliable recovery of model variables through
the developed approach.

149

Furthermore, a user-friendly GUI program for the BAKFAA Dynamic Backcalculation
(DynaBAKFAA) software was introduced. This software facilitated tasks such as generating a
mesh for the pavement structure domain, creating the FWD input files, inputting and editing
material properties pavement layers, conducting forward analyses to determine pavement
responses, and performing dynamic backcalculation with various optimizers to ascertain
pavement variables.

9. REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016).
Tensorflow: A system for large-scale machine learning. In K. Keeton, & T. Roscoe
(Chairs.), OSDI ’16: Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16) pp. 265–283.

ABAQUS. (2019). Finite Element Computer Program. Dassault Systèmes Simulia Corp., France.

American Association of State Highway and Transportation Officials (AASHTO). (2017).
Standard method of test for determining the dynamic modulus and flow number for
asphalt mixtures using the asphalt mixture performance tester (AMPT) (AASHTO T
378). Washington, DC.

AASHTO. (2021). Standard method of test for determining the resilient modulus of soils and
aggregate materials (AASHTO T 307). Washington, DC.

BAKFAA. Federal Aviation Administration. Last accessed September 21, 2023:

https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-
Safety-Detail/bakfaa-342-1.

Bathe, K. J. (2014). Finite element procedures (2nd ed.). Klaus-Jürgen Bathe, Watertown, MA.

Bazi, G., Mansour, E., Sebaaly, P. E., & Hajj, E. Y. (2018). FAA pavement evaluation and
design model research grant number 16-G-018 (Final Report). University of Nevada,
Reno.

Bazi, G., Mansour, E., Sebaaly, P., Ji, R., & Garg, N. (2019). Instrumented flexible pavement
responses under aircraft loading. International Journal of Pavement Engineering, 22(10),
1213–1225. https://doi.org/10.1080/10298436.2019.1671589

Bazi, G., Gagnon, J., Sebaaly, P., & Ullidtz, P. (2020). Effects of Rayleigh damping on the
subgrade’s apparent nonlinearity. Journal of Transportation Engineering, Part B:
Pavements, 146(3)., https://doi.org/10.1061/JPEODX.0000194

Bazi, G., Saboundjian, S., Bou Assi, T., & Diab, M. (2020, January 12–16). Assessment of a low-
volume flexible pavement through dynamic backcalculation [Paper presentation].
Transportation Research Board (TRB) 99th Annual Meeting. Washington, DC.

Bazi, G. & Bou Assi, T. (2022). Asphalt concrete master curve using dynamic backcalculation.
International Journal of Pavement Engineering, 23(1), 95–106.
https://doi.org/10.1080/10298436.2020.1733567

https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/bakfaa-342-1
https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/bakfaa-342-1
https://doi.org/10.1080/10298436.2019.1671589
https://doi.org/10.1080/10298436.2020.1733567

150

Björck, Å. (1996). Numerical methods for least squares problems. Society for Industrial and
Applied Mathematics. https://doi.org/10.1137/1.9781611971484

Brust, J., Burdakov, O., Erway, J. B., Marcia, R. F., & Yuan, Y.-X. (2016). Algorithm XXX: SC-
SR1: Matlab software for solving shape-changing L-SR1 trust-region subproblems.
Accessed March 2024, eprint arXiv:1607.03533.
https://doi.org/10.48550/arXiv.1607.03533

Byrd, R H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific and Statistical Computing, 16(5),
1190-1208. https://doi.org/10.1137/0916069

Chatti, K., Ji, Y., Harichandran, R. S., & Lee, H. S. (2004). Development of a computer
program for dynamic backcalculation of flexible pavement layer moduli(RC-1450 Final
report). Michigan Department of Transportation, Lansing, MI.

Chatti, K., & Lei, L. (2012). Forward calculation of subgrade modulus using falling weight
deflectometer time histories and wave propagation theory In R.D. Hryciw, A.
Athanasopoulos-Zekkos, &N. Yesiller (Eds.), GeoCongress 2012: State of the Art and
Practice in Geotechnical Engineering (Geotechnical Special Publication No. 225, pp.
1400-1409). https://doi.org/10.1061/9780784412121.144

Chen, X., Lin, Q., Kim, S., Carbonell, J. G., & Xing, E. P. (2012). Smoothing proximal gradient
method for general structured sparse regression. The Annals of Applied Statistics, 6(2),
719–752. https://doi.org/10.1214/11-AOAS514

Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., & de Freitas, N.
(2018). Bayesian Optimization in AlphaGo. arXiv preprint arXiv:1812.06855.
https://doi.org/10.48550/arXiv.1812.06855

Choi, J. W., Wu, R., Pestana, J. M., & Harvey, J. (2010). New layer-moduli back-calculation
method based on the Constrained Extended Kalman Filter. Journal of Transportation
Engineering, 136(1). https://doi.org/10.1061/(ASCE)0733-947X(2010)136:1(20)

Cook, R. D. (1995). Finite element modeling for stress analysis. John Wiley & Sons.

De Borst, R., Crisfield, M. A., Remmers, J. J., & Verhoosel, C. V. (2012). Non-linear finite
element analysis of solids and structures. John Wiley & Sons.
https://doi.org/10.1002/9781118375938

Fu, G., Zhao, Y., Zhou, C., & Liu, W. (2020). Determination of effective frequency range
excited by falling weight deflectometer loading history for asphalt pavement.
Construction and Building Materials, 235, Article number117792.
https://doi.org/10.1016/j.conbuildmat.2019.117792

Jaeger, B., & Geiger, A. (2023). An Invitation to Deep Reinforcement Learning. arXiv preprint
arXiv:2312.08365. https://arxiv.org/abs/2312.08365

https://doi.org/10.1137/1.9781611971484
https://doi.org/10.48550/arXiv.1607.03533
https://doi.org/10.1137/0916069
https://doi.org/10.1214/11-AOAS514
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.48550%2FarXiv.1812.06855&data=05%7C02%7Celieh%40unr.edu%7C6568f6c412bf43ba9fe108dc486ddd21%7C523b4bfc0ebd4c03b2b96f6a17fd31d8%7C0%7C0%7C638464883936116183%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=4y9RvIIoRYmUOJl2D0buFYCHmwQ6Y%2F43hui%2BAf91r2w%3D&reserved=0
https://doi.org/10.1061/(ASCE)0733-947X(2010)136:1(20)
https://doi.org/10.1002/9781118375938
https://doi.org/10.1016/j.conbuildmat.2019.117792
https://arxiv.org/abs/2312.08365

151

Gao, F., & Han, L. (2012). Implementing the Nelder-Mead simplex algorithm with adaptive
parameters. Computational Optimization and Applications, 51, 259–277.
https://doi.org/10.1007/s10589-010-9329-3

Geuzaine, C., & Remacle, J-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in
pre- and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579

Gopalakrishnan, K., Kim, S., Ceylan, H., & Kaya, O. (2014). Development of asphalt dynamic
modulus master curve using falling weight deflectometer measurements (Tech Transfer
Summary TR-659). Iowa State University, Institute for Transportation.
https://rosap.ntl.bts.gov/view/dot/58914

Gopalakrishnan, K., Kim, S., Ceylan, H., & Kaya, O. (2015, June 10–12). Use of neural
networks enhanced differential evolution for backcalculating asphalt concrete viscoelastic
properties from falling weight deflectometer time series data. Proceedings of the 6th
International Conference on Bituminous Mixtures and Pavements. Thessaloniki, Greece.

Hamim, A., Yusoff, N. I. M., Omar, H. A., Jamaludin, N. A. A., Hassan, N. A., El-Shafie, A., &
Ceylan, H. (2020). Integrated finite element and artificial neural network methods for
constructing asphalt concrete dynamic modulus master curve using deflection time-
history data. Construction and Building Materials, 257, Article number 119549.
https://doi.org/10.1016/j.conbuildmat.2020.119549

Harichandran, R. S., Mahmood, T., Raab, A. R., & Baladi, G. Y. (1993). Modified Newton
algorithm for backcalculation of pavement layer properties. Transportation Research
Record, 1384, 15–22. Strength and Deformation Characteristics of Pavement Structures
(trb.org)

Hilber, H. M., Hughes, T. J., & Taylor, R. L. (1977). Improved numerical dissipation for time
integration algorithms in structural dynamics. Earthquake Engineering & Structural
Dynamics, 5(3), 283–292. https://doi.org/10.1002/eqe.4290050306

Huang, Wen & Gallivan, Kyle & Absil, P.-A. (2015). A Broyden Class of Quasi-Newton
Methods for Riemannian Optimization. SIAM Journal on Optimization. 25. 1660-1685.
10.1137/140955483.

Hutton, D.V. (2004). Fundamentals of finite element analysis. McGraw Hill.

Jaeger, B., &Geiger, A. (2023). An invitation to deep reinforcement learning. arXiv preprint
arXiv:2312.08365. https://arxiv.org/abs/2312.08365

Kaliske, M., & Rothert, H. (1997). Formulation and implementation of three-dimensional
viscoelasticity at small and finite strains. Computational Mechanics, 19(3), 228–239.
https://doi.org/10.1007/s004660050171

https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1002/nme.2579
https://rosap.ntl.bts.gov/view/dot/58914
https://doi.org/10.1016/j.conbuildmat.2020.119549
https://onlinepubs.trb.org/Onlinepubs/trr/1993/1384/1384-003.pdf
https://onlinepubs.trb.org/Onlinepubs/trr/1993/1384/1384-003.pdf
https://arxiv.org/abs/2312.08365

152

Khetan, A. & Karnin, Z. (2020, July 5–10). schuBERT: Optimizing elements of BERT
(arXiv:2005.06628v1 [cs.CL]) [Long paper]. Submitted to the 58th Annual Meeting of the
Association for Computational Linguistics (virtual).
https://doi.org/10.48550/arXiv.2005.06628

Kim, Y. R., Xu, B., & Kim, Y. (2000). A new backcalculation procedure based on dispersion

analysis of FWD time-history deflections and surface wave measurements using artificial
neural networks. In D. Shiraz & E. O. Lukanen (Eds.), Non-destructive Testing of
Pavements and Backcalculation of Moduli: Third Volume. ASTM International.
https://doi.org/10.1520/STP14774S

Kundu, R. (2022, March 1). The complete guide to ensemble learning. V7.

https://www.v7labs.com/blog/ensemble-learning

Kutay, M. E., Chatti, K., & Lei, L. (2011). Backcalculation of dynamic modulus master curve from
falling weight deflectometer surface deflections. Transportation Research Record,
2227(1), 87–96. https://doi.org/10.3141/2227-10

Lee, H. S., Ayyala, D., & Von Quintus, H. (2017). Dynamic backcalculation of viscoelastic asphalt
properties and master curve construction. Transportation Research Record, 2641(1), 29–
38. https://doi.org/10.3141/2641-05

Liu, G. R., & Quek, S. S. (2013). The finite element method: A practical course (2nd ed.).
Elsevier.

Logan, D. L. (2017). A First Course in the Finite Element Method (6th ed.). Cengage Learning,
Boston, MA.

Lourakis, M. I. A., & Argyros, A. A. (2005). Is Levenberg-Marquardt the Most Efficient
Optimization Algorithm for Implementing Bundle Adjustment? In Proceedings / IEEE
International Conference on Computer Vision (pp. 1526–1531). IEEE.
https://doi.org/10.1109/ICCV.2005.128

Moré, J. J. (1978). The Levenberg-Marquardt algorithm: Implementation and theory in G.A.
Watson (Ed.), Lecture Notes in Mathematics, 630, 105-116. Springer.
https://doi.org/10.1007/BFb0067700

Moritz, P., Nishihara, R., & Jordan, M. (2016). A Linearly-Convergent Stochastic L-BFGS
Algorithm. In A. Gretton & C. C. Robert (Eds.), Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (pp. 249-258). PMLR.
https://proceedings.mlr.press/v51/moritz16.html

Newmark, N. M. (1959). A method of computation for structural dynamics. Journal of the

Engineering Mechanics Division, 85(3), 67–94.
https://doi.org/10.1061/JMCEA3.0000098

https://arxiv.org/abs/2005.06628v1
https://doi.org/10.48550/arXiv.2005.06628
https://doi.org/10.1520/STP14774S
https://www.v7labs.com/blog/ensemble-learning
https://doi.org/10.3141/2227-10
https://doi.org/10.3141/2641-05
https://doi.org/10.1109/ICCV.2005.128
https://doi.org/10.1007/BFb0067700
https://proceedings.mlr.press/v51/moritz16.html
https://doi.org/10.1061/JMCEA3.0000098

153

Oller, S. (2014). Nonlinear dynamics of structures. Springer International Publishing.
https://doi.org/10.1007/978-3-319-05194-9

Oñate, E. (2009). Structural analysis with the finite element method. Linear statics: Volume 1:
Basis and solids. Springer Science & Business Media. https://doi.org/10.1007/978-1-
4020-8733-2

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703. https://doi.org/10.48550/arXiv.1912.01703

Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M., & Vrgoč, D. (2016, April 11-15). Foundations of
JSON schema. In J. Bourdeau, J. A. Hendler, & R. Nkambou (Chairs.), WWW ’16:
Proceedings of the 25th International Conference on World Wide Web, pp. 263–273.
Quebec, Montreal, Canada. https://doi.org/10.1145/2872427.2883029

Powell, M. J. D. (1964). An efficient method for finding the minimum of a function of several
variables without calculating derivatives. The Computer Journal, 7(2), 155–162.
https://doi.org/10.1093/comjnl/7.2.155

Pu, D., & Yu, W. (1990). On the convergence property of the DFP algorithm. Annals of
Operations Research, 24, 175–184. https://doi.org/10.1007/BF02216822.

Qu, Z. Q. (2004). Model order reduction techniques with applications in finite element analysis.
Springer-Verlag London Ltd. https://doi.org/10.1007/978-1-4471-3827-3

Sebaaly, B., Davis, T. G., & Mamlouk, M. S. (1985). Dynamics of falling weight deflectometer.
Journal of Transportation Engineering, 111(6),618–632.
https://doi.org/10.1061/(ASCE)0733-947X(1985)111:6(618)

Sebaaly, B. E., Mamlouk, M. S., & Davies, T. G. (1986). Dynamic Analysis of Falling Weight
Deflectometer Data. Transportation Research Record, 1070, 63–68.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT
Press.

Varma, S., Kutay, M.E., & Chatti, K. (2013). Data requirements from falling weight

deflectometer tests for accurate backcalculation of dynamic modulus master curve of
asphalt pavements. In I. L. Al-Qadi & S. Murrell (Eds.), Airfield and Highway Pavement
2013: Sustainable and Efficient Pavements (pp. 445-455). American Society of Civil
Engineers. https://doi.org/10.1061/9780784413005.035

Varma, S., & Kutay, M. E. (2016). Backcalculation of viscoelastic and nonlinear flexible
pavement layer properties from falling weight deflections. International Journal of
Pavement Engineering, 17(5), 388–402. https://doi.org/10.1080/10298436.2014.993196

https://doi.org/10.1007/978-3-319-05194-9
https://doi.org/10.1007/978-1-4020-8733-2
https://doi.org/10.1007/978-1-4020-8733-2
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1007/BF02216822
https://doi.org/10.1007/978-1-4471-3827-3
https://doi.org/10.1061/(ASCE)0733-947X(1985)111:6(618)
https://doi.org/10.1061/9780784413005.035
https://doi.org/10.1080/10298436.2014.993196

154

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8, 229–256.
https://doi.org/10.1007/BF00992696

Woodbury, A.C. (2008). Localized coarsening of conforming all-hexahedral meshes [Master’s
Thesis, Brigham Young University] Brigham Young University ScholarsArchive.
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2535&context=etd

Wu, F., Luo, H., Jia, H., Zhao, F., Xiao, Y., & Gao, X. (2021). Predicting the noise covariance
with a multitask learning model for Kalman Filter-Based GNSS/INS integrated
navigation. IEEE Transactions on Instrumentation and Measurement, 70, 8500613.
https://doi.org/10.1109/TIM.2020.3024357

Ypma, T. J. (1995). Historical development of the Newton–Raphson method. SIAM Review,
37(4), 531–551. https://doi.org/10.1137/1037125

Zaabar, I., Chatti, K., Lee, H. S., & Lajnef, N. (2014). Backcalculation of asphalt concrete
modulus master curve from field-measured falling weight deflectometer data: Using a
new time domain viscoelastic dynamic solution and genetic algorithm. Transportation
Research Record, 2457(1), 80–92. https://doi.org/10.3141/2457-09

Zienkiewicz, O. C., Taylor, R. L., & Zhu, J.Z. (2013). The Finite Element Method: Its Basis and
Fundamentals. Elsevier. https://doi.org/10.1016/C2009-0-24909-9

https://doi.org/10.1007/BF00992696
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2535&context=etd
https://doi.org/10.1109/TIM.2020.3024357
https://doi.org/10.1137/1037125
https://doi.org/10.1016/C2009-0-24909-9

A-1

APPENDIX A—OPTIMIZATION TECHNIQUE EXAMPLES

In this appendix, a simple one-layer system with three variables {E, Rayleigh alpha, Rayleigh
beta} is used to detail how the optimization methods work in the proposed framework.

To be consistent with Section 5.3.5 of the main document, the deflections are generated with {E
= 20,000 psi, Rayleigh alpha = 20, Rayleigh beta = 0.002}, and the optimizer is given an initial
variables set of {E = 5,000 psi, Rayleigh alpha= 5, Rayleigh beta = 0.006}. Optimizers are
expected to tweak the variables to recover the ground truth variables set that are used to generate
target vertical deflections. Note the ground truth variables are unknown to the optimizers.

A.1 Newton-Raphson Method

Here is a full update iteration using first-order Newton-Raphson method. According to the
update Equation 65 of Section 5.3.1,

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

𝑓𝑓′(𝑥𝑥0) is needed to update 𝑥𝑥. As the target function is not differentiable, the finite difference
equation 𝑓𝑓′(𝑥𝑥) ≈ 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)

ℎ
 from Section 5.3.3 is used to approximate 𝑓𝑓′(𝑥𝑥0). Note that ℎ is the

step size. Typically, 1 percent of 𝑥𝑥 is used as the step size.

Table A-1. Example of Calculation for First-Order Derivative Parameters

Rayleigh alpha Rayleigh beta E RMSRE Note
5 0.006 5,000 98.139 Initial point 𝑓𝑓(𝑥𝑥0)

5.05 0.006 5,000 98.101 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh alpha)
5 0.00606 5,000 97.748 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh beta)
5 0.006 5,050 96.881 𝑓𝑓(𝑥𝑥0 + 1%E)

Table A-2. Example of First-Order Partial Derivative Calculation

F(x) F(x+h) h Partial Derivative Note

98.139 98.101 0.05 -0.741 Rayleigh alpha
98.139 97.748 0.00006 -6503 Rayleigh beta
98.139 96.881 50 -0.0251 𝐸𝐸

Thus, the gradient 𝑓𝑓′(𝑥𝑥0) = [-0.741 -6503 -0.0251]

𝑥𝑥 is updated as

𝑥𝑥1 = 𝑥𝑥0 −
𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0)

= [5. 0.006 5000] - 98.139 / [-0.741 -6503 -0.0251]
= [137.374 0.0210 8903]

A-2

The root-mean-square relative error (RMSRE) for 𝑥𝑥1 is 75.066. Compared with 98.139 of 𝑥𝑥0,
there is a 25 percent improvement. By iteratively updating 𝑥𝑥 in this way, the target variables can
be approached to resemble the target deflections.

A.2 Second-Order Newton-Raphson Method

The updated equation of second-order Newton-Raphson is:

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓′(𝑥𝑥𝑛𝑛)
𝑓𝑓′′(𝑥𝑥𝑛𝑛)

To compute 𝑓𝑓′′(𝑥𝑥𝑛𝑛) by finite difference:

 𝑓𝑓′′(𝑥𝑥𝑛𝑛) = 𝑓𝑓(𝑥𝑥+ℎ𝑘𝑘)−𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥+𝑘𝑘)+𝑓𝑓(𝑥𝑥)
ℎ𝑘𝑘

Similar to first-order computation, the derivative parameters for both first order and second order
are as follows:

Table A-3. Example of Calculation for First-Order Derivative Parameters

Rayleigh alpha E Rayleigh beta RMSRE Note
5 5,000 0.006 98.139 Initial point 𝑓𝑓(𝑥𝑥0)

5.05 5,000 0.006 98.101 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh alpha)
5 5,000 0.00606 97.748 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh beta)
5 5,050 0.006 96.881 𝑓𝑓(𝑥𝑥0 + 1%E)

Thus, the gradient 𝑓𝑓′(𝑥𝑥0) = [-0.741 -6503 -0.0251].
For second-order terms, they are as follows

Table A-4. Example of Calculation for Second-Order Derivative Parameters

Rayleigh alpha E Rayleigh beta RMSRE Note

5.05 5,050 0.006 96.844 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh alpha
+ 1%E)

5.05 5,000 0.00606 97.711 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh beta
+ 1%Rayleigh beta)

5 5,050 0.00606 96.495 𝑓𝑓(𝑥𝑥0 + 1%E
+ 1%Rayleigh beta)

5.1 5,000 0.006 98.062 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh alpha
+ 1%Rayleigh alpha)

5 5,100 0.006 95.648 𝑓𝑓(𝑥𝑥0 + 1%E + 1%E)

5 5,000 0.00612 97.358 𝑓𝑓(𝑥𝑥0 + 1%Rayleigh beta
+ 1%Rayleigh beta)

A-3

Based on Finite Difference equation, Hessian matrix can be computed:

�
0.849 25.193 0.000283

25.193 62112 1.222
0.000283 1.222 0.00000943

�

The exact invert of Hessian is computationally expensive, and thus LU decomposition is used to
approximate it.

�
−1.189 −0.000333 7.557

−0.000333 −0.00000462 0.589
7.557 0.589 29809

�

Thus 𝑥𝑥 can be updated by 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −

𝑓𝑓′(𝑥𝑥𝑛𝑛)
𝑓𝑓′′(𝑥𝑥𝑛𝑛)

 = [2.138 -0.00949 9591]. Unfortunately, the
updated 𝑥𝑥 leads to an infinite large RMSRE, and thus the optimization diverges.

A.3 BROYDEN–FLETCHER–GOLDFARB–SHANNO ALGORITHM (BFGS)

This example shows a breakdown of how BFGS, the most classical Quasi-Newton method,
works on the one-layer system.

Given the BFGS updated equations:

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝐵𝐵𝑡𝑡−1𝑔𝑔
𝑠𝑠𝑡𝑡 = 𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡
𝑦𝑦𝑡𝑡 = 𝑔𝑔𝑡𝑡+1 − 𝑔𝑔𝑡𝑡
𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 −

𝐵𝐵𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑇𝑇𝐵𝐵𝑡𝑡
𝑠𝑠𝑡𝑡𝐵𝐵𝑡𝑡𝑠𝑠𝑡𝑡

+ 𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡𝑇𝑇

𝑦𝑦𝑡𝑡𝑠𝑠𝑡𝑡

and the fact that 𝐵𝐵0 = 𝐼𝐼, it can be concluded that the first step of BFGS is identical to Newton’s
method. Thus, researchers use the conclusion from Appendix A.1 to set:

𝑥𝑥1 = 𝑥𝑥0 −
𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0) = [137.374 0.0210 8903]

Next is step 2 of the BFGS algorithm:

𝑠𝑠0 = 𝑥𝑥1 − 𝑥𝑥0 = [137.374 0.0210 8903] - [5. 0.006 5000] = [132.374 0.015 3903]

To compute 𝑦𝑦0 = 𝑔𝑔1 − 𝑔𝑔0, finite difference (see Appendix A.1) is used to approximate 𝑔𝑔1 :

A-4

Table A-5. Example of Calculation for First-Order Derivative Parameters

Rayleigh alpha Rayleigh beta E RMSRE Note
137.374 0.0210 8,903 74.920 Initial point 𝑓𝑓(𝑥𝑥1)
138.747 0.0210 8,903 75.301 𝑓𝑓(𝑥𝑥1 + 1%Rayleigh alpha)
137.374 0.0212 8,903 75.277 𝑓𝑓(𝑥𝑥1 + 1%Rayleigh beta)
137.374 0.0210 8,992 74.475 𝑓𝑓(𝑥𝑥1 + 1%E)

Table A-5. Example of First-Order Partial Derivative Calculation

F(x) F(x+h) h Partial derivative Note

74.920 75.301 1.373 0.277 Rayleigh alpha
74.920 75.277 0.0002 1785 Rayleigh beta
74.920 74.475 89 -0.005 𝐸𝐸

Thus, the gradient 𝑔𝑔1 = 𝑓𝑓′(𝑥𝑥1) = [0.277 1785 -0.005]

𝑦𝑦0 = 𝑔𝑔1 − 𝑔𝑔0 =[0.277 1785 -0.005]- [-0.741 -6503 -0.0251] = [1.018 8288 0.0201]

With 𝑠𝑠0 and 𝑦𝑦0, the Hessian matrix could be approximated as

𝐵𝐵1 = 𝐵𝐵0 −
𝐵𝐵0𝑠𝑠0𝑠𝑠0𝑇𝑇𝐵𝐵0𝑇𝑇

𝑠𝑠0𝑇𝑇𝐵𝐵0𝑠𝑠0
+
𝑦𝑦0𝑦𝑦0𝑇𝑇

𝑦𝑦0𝑇𝑇𝑠𝑠0
=

�
1.001 24.997 0.0338

24.997 203513 0.493
0.0338 0.493 0.00115

�

And its inverse 𝐵𝐵1−1 =

�
10565489 2053 0.311519660

2053 0.399 60538
311519660 60538 9185046009

�

Thus

𝐵𝐵1−1𝑔𝑔 = [-2295954 446.187 -67695387],

which is the direction of update. The actual update is computed with a Wolfe line search by
defining 𝑓𝑓(𝛾𝛾) = 𝑓𝑓(𝑥𝑥1 − 𝛾𝛾𝐵𝐵1−1𝑔𝑔) and solving 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓(𝛾𝛾)) with respects to 𝛾𝛾 > 0. The details
of this line search algorithm can be found in Wright and Nocedal, Numerical Optimization, 1999,
pp. 59–61. For demonstration purpose here, a simple step size, 0.00001, is used.

𝑥𝑥2 = 𝑥𝑥1 − 𝛾𝛾𝐵𝐵1−1𝑔𝑔 = [160.333 0.0165 9579]

The RMSRE for 𝑥𝑥2 is 68.255, which is better than 75.066 of 𝑥𝑥1. By iteratively updating 𝑥𝑥 in this
way, the target variables can be approached to resemble the target deflections.

	Abstract
	Key Words
	Table of Contents
	List of Figures
	List of Tables

